摘要:图像纹理特征能够反映图像的灰度分布程度、对比度、空间分布和图像的内在变化特性,在确保较低计算复杂度的前提下,有效提取深层次的图像纹理信息是其研究的难点问题.针对这一问题,从相邻区域的统计特征分析入手,提出了一种Haar 型特性局部二元模式(Haar local binary pattern,简称HLBP)的图像纹理特征提取方法.鉴于Haar 型特征运算简单、快捷,统计局部特征有效、可靠,将其引入LBP 中.该方法首先给出8 组Haar 型特征编码模式,按照局部二元模式(local binary pattern,简称LBP)统计图像局部纹理特征,因采用局部区域统计方法能够有效降低噪声的影响;其次,为了进一步提高图像纹理特征的有效呈现,结合Gabor 小波滤波在不同方向、不同尺度对灰度水平图像进行特征提取,以增强纹理有效提取的性能,提高不变特征的稳健性;最后,通过4 组对比实验验证了该方法的可行性.实验分别在标准的Brodatz 正常分块纹理库测试集、分块且缩放Brodatz 纹理库测试集、分块且旋转Brodatz 纹理库测试集以及Yale B 扩展的非均匀光照条件人脸库测试集上进行.实验结果表明,该方法能够有效地表达图像的纹理特征.