摘要:如何挖掘存储在手机上的大量短信息背后所隐含的会话信息,是一个非常具有挑战性的问题,因为它们并不具备“主题”、“回复”等经常被用于邮件线索分析的元数据.基于此,提出了一种基于时间聚类算法和话题检测的短信息会话识别模型.首先,根据短信息流的时间分布特性,将会话双方的所有短信息划分到一个一个的候选会话中,进而运用基于 latent Dirichlet allocation(LDA)训练出来的语义话题模型,对候选会话进行更深层次的分析;利用该话题模型度量了各个候选会话在话题上的相关度.最后,在综合时间和话题相关度的基础上,通过对候选会话的合并识别出隐含的会话信息.通过对包含了 50 名大学生在 6 个月中产生的 122 359 条短信进行实验验证,证明了该算法的有效性.