随机任务在云计算平台中能耗的优化管理方法
作者:
基金项目:

国家自然科学基金(61103068); 国家高技术研究发展计划(863)(2009AA012201); NSFC-微软亚洲研究院联合资助项目(60970155)


Policy of Energy Optimal Management for Cloud Computing Platform with Stochastic Tasks
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对云计算系统在运行过程中由于计算节点空闲而产生大量空闲能耗,以及由于不匹配任务调度而产生大量“奢侈”能耗的能耗浪费问题,提出一种通过任务调度方式的能耗优化管理方法.首先,用排队模型对云计算系统进行建模,分析云计算系统的平均响应时间和平均功率,建立云计算系统的能耗模型.然后提出基于大服务强度和小执行能耗的任务调度策略,分别针对空闲能耗和“奢侈”能耗进行优化控制.基于该调度策略,设计满足性能约束的最小期望执行能耗调度算法ME3PC(minimum expectation execution energy with performance constraints).实验结果表明,该算法在保证执行性能的前提下,可大幅度降低云计算系统的能耗开销.

    Abstract:

    In the running process of cloud computing system, the idle compute nodes will generate a large amount of idle energy consumption. Furthermore, the unmatching task scheduling strategy will also cause a great waste of energy consumption. This paper presents a policy of energy optimal management for cloud computing system based on task scheduling strategy. First, use queueing system to model the cloud computing system for analyzing the mean response time, mean power consumption of cloud computing system, and constructing the energy consumption model of cloud computing system. In order to reduce waste of energy, a high service utilization task scheduling and a low execution energy task scheduling strategy are propsed, which are used to reduce idle energy and “luxury” energy respectively. Based on the idea of the strategies, an algorithm is designed which is called minimum expectation execution energy with performance constraints (ME3PC). Repeated experiments show that this energy management strategy can reduce the energy consumption considerably while meeting performance constraints.

    参考文献
    [1] Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I. Cloud computing and emerging it platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems, 2009,25(6):599-616. [doi: 10.1016/j.future.2008.12.001]
    [2] Kansal A, Zhao F. Fine-Grained energy profiling for power-aware application design. SIGMETRICS Performance Evaluation Review, 2008,36(2):26-31. [doi: 10.1145/1453175.1453180]
    [3] Barroso LA, Holzle U. The case for energy-proportional computing. Computer, 2007,40(12):33-37. [doi: 10.1109/MC.2007.443]
    [4] Lin C, Tian Y, Yao M. Green network and green evaluation: Mechanism, modeling and evaluation. Chinese Journal of Computers, 2011,34(4):593-612 (in Chinese with English abstract). [doi: 10.3724/SP.J.1016.2011.00593]
    [5] Wu Q, Xiong GZ. Adaptive dynamic power management for non-stationary self-similar requests. Journal of Software, 2005,16(8): 1499-1505 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/16/1499.htm [doi: 10.1360/jos161499]
    [6] Costa GD, Gelas JP, Georgiou Y, Lefevre L, Orgerie AC, Pierson JM, Richard O, Sharma K. The green-net framework: Energy efficiency in large scale distributed systems. In: Mei A, ed. Proc. of the Int’l Symp. on Parallel and Distributed Processing. Piscataway: IEEE Computer Society, 2009. 1-8. [doi: 10.1109/IPDPS.2009.5160975]
    [7] Blume H, Livonius JV, Rotenberg L, Noll TG, Bothe H, Brakensiek J. OpenMP-Based parallelization on an MPcore multiprocessor platform—A performance and power analysis. Journal of Systems Architecture, 2008,54(11):1019-1029. [doi: 10.1016/j.sysarc.2008.04.001]
    [8] Venkatachalam V, Franz M. Power reduction techniques for microprocessor systems. ACM Computing Surveys, 2005,37(3): 195-237. [doi: 10.1145/1108956.1108957]
    [9] Lee KG, Veeravalli B, Viswanathan S. Design of fast and efficient energy-aware gradient-based scheduling algorithms for heterogeneous embedded multiprocessor systems. IEEE Trans. on Parallel and Distributed Systems, 2009,20(1):1-12. [doi: 10.1109/TPDS.2008.55]
    [10] Wang LZ, Laszewski GV, Dayal J, Wang FG. Towards energy aware scheduling for precedence constrained parallel tasks in a cluster with DVFS. In: Parashar M, Buyya R, eds. Proc. of the 10th IEEE/ACM Int’l Conf. on Cluster, Cloud and Grid Computing. Melbourne: IEEE Computer Society, 2010. 368-377. [doi: 10.1109/CCGRID.2010.19]
    [11] Kang J, Ranka S. Dynamic slack allocation algorithms for energy minimization on parallel machines. Journal of Parallel and Distributed Computing, 2010,70(5):417-430. [doi: 10.1016/j.jpdc.2010.02.005]
    [12] Nathuji R, Schwan K. Virtualpower: Coordinated power management in virtualized enterprise systems. In: Bressoud TC, Kaashoek MF, eds. Proc. of the ACM SIGOPS Symp. on Operating Systems Principles. Washington: ACM Press, 2007. 265-278. [doi: 10.1145/1294261.1294287]
    [13] Stoess J, Lang C, Bellosa F. Energy management for hypervisor-based virtual machines. In: Chase J, Seshan S, eds. Proc. of the USENIX Annual Technical Conf. Berkeley: USENIX Association, 2007. 1-14.
    [14] All published SPECpower_ssj2008 results. 2011. http://www.spec.org/power_ssj2008/results/power_ssj2008.html
    [15] All SPEC WEB2009 results. 2009. http://www.spec.org/web2009/results/web2009.html#JSP
    [16] Lien CH, Bai YW, Lin MB. Estimation by software for the power consumption of streaming-media servers. IEEE Trans. on Instrumentation and Measurement, 2007,56(5):1859-1870. [doi: 10.1109/TIM.2007.904554]
    [17] The Green500 list-November 2010. 2010. http://www.green500.org/lists/2010/11/top/list.php
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谭一鸣,曾国荪,王伟.随机任务在云计算平台中能耗的优化管理方法.软件学报,2012,23(2):266-278

复制
分享
文章指标
  • 点击次数:8849
  • 下载次数: 11764
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2011-07-15
  • 最后修改日期:2011-09-06
  • 在线发布日期: 2012-02-07
文章二维码
您是第19701093位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号