基于贝叶斯网络的频繁模式兴趣度计算及剪枝
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(60828005, 60975034, 61070131)


Computing and Pruning Method for Frequent Pattern Interestingness Based on Bayesian Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用贝叶斯网络表示领域知识,提出一种基于领域知识的频繁项集和频繁属性集的兴趣度计算和剪枝方法BN-EJTR,其目的在于发现与当前领域知识不一致的知识,以解决频繁模式挖掘所面临的有趣性和冗余问题.针对兴趣度计算过程中批量推理的需求,BN-EJTR 提供了一种基于扩展邻接树消元的贝叶斯网络推理算法,用于计算大量项集在贝叶斯网络中的支持度;同时,BN-EJTR 提供了一种基于兴趣度阈值和拓扑有趣性的剪枝算法.实验结果表明,与同类方法相比,方法BN-EJTR 具有良好的时间性能,而且剪枝效果明显;分析发现,经过剪

    Abstract:

    Based on background knowledge represented as a Bayesian network, this paper presents a BN-EJTR method that computes the interestingness of frequent items and frequent attributes, and prunes. BN-EJTR seeks to find inconsistent knowledge relative to background knowledge and to resolve the problems of un-interestingness and redundancy faced by frequent pattern mining. To deal with the demand of batch reasoning in Bayesian networks during computing interestingness, BN-EJTR provides a reasoning algorithm based on extended junction tree elimination for computing the support of a large number of items in a Bayesian network. In addition, BN-EJTR is equipped with a pruning mechanism based on a threshold for topological interestingness. Experimental results demonstrate that BN-EJTR has a good time performance compared with the same classified methods, and BN-EJTR also has effective pruning results. The analysis indicates that both the pruned frequent attributes and the pruned frequent items are un-interesting in respect to background knowledge.

    参考文献
    相似文献
    引证文献
引用本文

胡春玲,吴信东,胡学钢,姚宏亮.基于贝叶斯网络的频繁模式兴趣度计算及剪枝.软件学报,2011,22(12):2934-2950

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-01-11
  • 最后修改日期:2010-07-09
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号