基于最大相关熵准则的鲁棒半监督学习算法
作者:
基金项目:

国家自然科学基金(60873054, 50909012); 国家教育部高等学校博士学科点专项科研基金(20100041120009)


Robust Semi-Supervised Learning Algorithm Based on Maximum Correntropy Criterion
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    分析了噪声对半监督学习Gaussian-Laplacian 正则化(Gaussian-Laplacian regularized,简称GLR)框架的影响,针对最小二乘准则对噪声敏感的特点,结合信息论的最大相关熵准则(maximum correntropy criterion,简称MCC), 提出了一种基于最大相关熵准则的鲁棒半监督学习算法(简称GLR-MCC),并证明了算法的收敛性.半二次优化技术被用来求解相关熵目标函数.在每次迭代中,复杂的信息论优化问题被简化为标准的半监督学习问题.典型机器学习数据集上的仿真实验结果表明,在标签噪声和遮挡噪声的情况下,该算法能够有效地提高半监督学习算法性能.

    Abstract:

    This paper analyzes the problem of sensitivity to noise in the mean square criterion of Gaussian- Laplacian regularized (GLR) algorithm. A robust semi-supervised learning algorithm based on maximum correntropy criterion (MCC), called GLR-MCC, is proposed to improve the robustness of GLR along with its convergence analysis. The half quadratic optimization technique is used to simplify the correntropy optimization problem to a standard semi-supervised problem in each iteration. Experimental results on typical machine learning data sets show that the proposed GLR-MCC can effectively improve the robustness of mislabeling noise and occlusion as compared with related semi-supervised learning algorithms.

    参考文献
    [1] Wei J, Peng H. Local and global preserving based semi-supervised dimensionality reduction method. Journal of Software, 2008, 19(11):2833-2842 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/19/2833.htm [doi: 10.3724/SP.J.1001.2008. 02833]
    [2] Xiao Y, Yu J. Semi-Supervised clustering based on affinity propagation algorithm. Journal of Software, 2008,19(11):2803-2813 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/19/2803.htm [doi: 10.3724/SP.J.1001.2008.02803]
    [3] Yin XS, Hu EL, Chen SC. Discriminative semi-supervised clustering analysis with pairwise constraints. Journal of Software, 2008, 19(11):2791-2802 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/19/2791.htm [doi: 10.3724/SP.J.1001.2008. 02791]
    [4] Gao Y, Liu DY, Qi H, Liu H. Semi-Supervised K-means clustering algorithm for multi-type relational data. Journal of Software, 2008,19(11):2814-2821 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/19/2814.htm [doi: 10.3724/SP.J.1001. 2008.02814]
    [5] Chen JX, Ji DH. Graph-Based semi-supervised relation extraction. Journal of Software, 2008,19(11):2843-2852 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/19/2843.htm [doi: 10.3724/SP.J.1001.2008.02843]
    [6] Zhao Z, Liu H. Spectral feature selection for supervised and unsupervised learning. In: Ghahramani Z, ed. Proc. of the 24th Int’l Conf. on Machine Learning (ICML 2007). New York: ACM, 2007. 1151-1157. [doi: 10.1145/1273496.1273641]
    [7] Yang SH, Zha HY, Zhou SK, Hu BG. Variational graph embedding for globally and locally consistent feature extraction. In: Buntine W, ed. Proc. of the European Conf. on Machine Learning and Knowledge Discovery in Databases: Part II (ECML PKDD 2009). Berlin: Springer-Verlag, 2009. 538-553. [doi: 10.1007/978-3-642-04174-7_35]
    [8] Zhou DY, Bousquet O, Lal TN, Weston J, Sch?lkopf B. Learning with local and global consistency. Advances in Neural Information Processing Systems, 2004,16:321-328.
    [9] Li M, Zhang ZX, Huang KQ, Tan TN. Robust visual tracking based on simplified biologically inspired features. In: Bayoumi M, ed. Proc. of the 16th IEEE Int’l Conf. on Image Processing (ICIP 2009). Piscataway: IEEE Press, 2009. 4061-4064. [doi: 10.1109/ ICIP.2009.5413456]
    [10] Wang F, Zhang CS. Label propagation through linear neighborhoods. IEEE Trans. on Knowledge and Data Engineering, 2008, 20(1):55-67. [doi: 10.1109/TKDE.2007.190672]
    [11] Wang F, Zhang CS. Robust self-tuning semi-supervised learning. Neurocomputing, 2007,70(16-18):2931-2939. [doi: 10.1016/ j.neucom.2006.11.004]
    [12] He R, Hu BG, Yuan XT. Robust discriminant analysis based on nonparametric maximum entropy. In: Zhou ZH, ed. Proc. of the 1st Asian Conf. on Machine Learning: Advances in Machine Learning (ACML 2009). Berlin: Springer-Verlag, 2009. 120-134. [doi: 10.1007/978-3-642-05224-8_11]
    [13] Yuan XT, Hu BG. Robust feature extraction via information theoretic learning. In: Danyluk A, ed. Proc. of the 26th Annual Int’l Conf. on Machine Learning (ICML 2009). New York: ACM, 2009. 1193-1200. [doi: 10.1145/1553374.1553526]
    [14] Huber P. Robust Statistics. New Jersey: Wiley, 1981.
    [15] Belkin M, Matveeva I, Niyogi P. Regularization and semi-supervised learning on large graphs. Lecture Notes in Computer Science, 2004,3120:624-638. [doi: 10.1007/978-3-540-27819-1_43]
    [16] Zhu XJ, Ghahramani Z, Lafferty Z. Semi-Supervised learning using gaussian fields and harmonic functions. In: Fawcett T, Mishra N, eds. Proc. of the 20th Int’l Conf. on Machine Learning (ICML 2003). AAAI Press, 2003. 912-919.
    [17] Liu WF, Pokharel PP, Principe JC. Correntropy: Properties and applications in non-gaussian signal processing. IEEE Trans. on Signal Processing, 2007,55(11):5286-5298. [doi: 10.1109/TSP.2007.896065]
    [18] Chapelle O, Weston J, Schölkopf B. Cluster kernels for semi-supervised learning. Advances in Neural Information Processing System, 2003,15:585-592.
    [19] Belkin M, Niyogi P, Sindhwani V. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 2006,7(11):2399-2434.
    [20] He R, Hu BG, Zheng WS, Guo YQ. Two-Stage sparse representation for robust recognition on large-scale database. In: Fox M, Poole D, eds. Proc. of the 24th AAAI Conf. on Artificial Intelligence (AAAI 2010). AAAI Press, 2010. 475-480.
    [21] He R, Hu BG, Yuan XT, Zheng WS. Principal component analysis based on nonparametric maximum entropy. Neurocomputing, 2010,73(10-12):1840-1852. [doi: 10.1016/j.neucom.2009.12.032]
    [22] Vapnik VN. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
    [23] Tyrrell RR. Convex Analysis. New Jersey: Princeton: Princeton Press, 1970.
    [24] Nikolova M, Ng MK. Analysis of half-quadratic minimization methods for signal and image recovery. Society for Industrial and Applied Mathematics, 2005,27(3):937-966. [doi: 10.1137/030600862]
    [25] Yuan XT. Algorithm study on non-parametric kernel density clustering and feature extraction [Ph.D. Thesis]. Beijing: the Chinese Academic of Sciences, 2009 (in Chinese with English abstract).
    [26] Philips PJ, Flynn PJ, Sruggs T, Bowyer KW, Bowyer KW, Jin Chang, Hoffman K, Marques J, Jaesik Min, Worek W. Overview of the face recognition grand challenge. In: Hebert M, Kriegman D, eds. Proc. of the 2005 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition (CVPR 2005). Washington: IEEE Computer Society, 2005. 947-954. [doi: 10.1109/ CVPR.2005.268]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨南海,黄明明,赫然,王秀坤.基于最大相关熵准则的鲁棒半监督学习算法.软件学报,2012,23(2):279-288

复制
分享
文章指标
  • 点击次数:5913
  • 下载次数: 9637
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2010-05-04
  • 最后修改日期:2010-10-11
  • 在线发布日期: 2012-02-07
文章二维码
您是第19791742位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号