知识不确定性问题的粒计算模型
作者:
基金项目:

国家自然科学基金(61073146); 重庆市自然科学基金(2008BA2017); 重庆市杰出青年科学基金(2008BA2041)


Granular Computing Models for Knowledge Uncertainty
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [76]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    知识不仅是构成人类认知能力的重要基石,也是智能科学研究的基础问题之一.随着智能科学技术研究的发展,知识的不确定性研究受到人们的普遍关注.知识的不确定性来源于知识本身的不确定性以及受外界(客观世界)影响而导致的不确定性.从粒计算模型的角度分析了模糊集理论模型、粗糙集理论模型、商空间理论模型以及其他扩展粒计算模型中知识的不确定性问题,并对知识不确定性问题的研究工作进行了讨论和总结,对有待研究的重要问题进行了展望.

    Abstract:

    Knowledge is not only an important cornerstone that constructs the cognitive ability in human beings, but is also one of the basic issues in intelligence science. With the development of intelligence science and technology, the study of knowledge uncertainty is attracting more and more attention. Knowledge uncertainty includes the inherent uncertainty of knowledge itself and the effect of external influence on knowledge. In the view of granular computing (GrC), the knowledge uncertainties of the fuzzy set theory model, the rough set theory model, the quotient space theory model, and some other related granular computing models are studied in this paper. The state-of-the-art and key issues of knowledge uncertainty are discussed.

    参考文献
    [1] Li DY, Liu CY, Du Y, Han X. Artificial intelligence with uncertainty. Journal of Software, 2004,15(11):1583?1594 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/15/1583.htm
    [2] Kline M, Wrote; Li HK, Trans. Mathematics: The Loss of Certainty. Changsha: Hu’nan Science and Technology Press, 2007 (in Chinese).
    [3] Zadeh LA. Fuzzy sets. Information and Control, 1965,8(3):338?353. [doi: 10.1016/S0019-9958(65)90241-X]
    [4] Pawlak Z. Rough sets. Int’l Journal of Computer and Information Sciences, 1982,11(5):341?356. [doi: 10.1007/BF01001956]
    [5] Gau WL, Buehrer DJ. Vague sets. IEEE Trans. on Systems, Man and Cybernetics, 1993,23(2):610?614. [doi: 10.1109/21.229476]
    [6] Zhang WX, Yao YY, Liang Y. Rough Set and Concept Lattice. Xi’an: Xi’an Jiaotong University Press, 2006. 136?157 (in Chinese).
    [7] Zhang B, Zhang L. The Theory and Applications of Problem Solving. Beijing: Tsinghua University Press, 1990 (in Chinese).
    [8] Zadeh LA. Probability measures of fuzzy events. Journal of Mathematical Analysis and Applications, 1968,23(2):421?427.
    [9] Pal NR, Bezdek JC. Measuring fuzzy uncertainty. IEEE Trans. on Fuzzy Systems, 1994,2(2):107?118. [doi: 10.1109/91.277960]
    [10] Liang JY, Qian YH. Axiomatic approach of knowledge granulation in information system. Lecture Notes in Artificial Intelligence, 2006,4304:1074?1078. [doi: 10.1007/11941439_125]
    [11] Miao DQ, Wang J. On the relationships between information entropy and roughness of knowledge in rough set theory. PR & AI, 1998,11(1):34?40 (in Chinese with English abstract).
    [12] Qian YH, Liang JY. Combination entropy & combination granulation in rough set theory. Int’l Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2008,16(2):179?193. [doi: 10.1142/S0218488508005121]
    [13] Wang GY, Zhang QH. Uncertainty of rough sets in different knowledge granularities. Chinese Journal of Computers, 2008,31(9): 1588?1598 (in Chinese with English abstract). [doi: 10.3724/SP.J.1016.2008.01588]
    [14] Wang GY, Yu H, Yang DC. Decision table reduction based on conditional information entropy. Chinese Journal of Computers, 2002,25(7): 1?8 (in Chinese with English abstract).
    [15] Lin TY. Neighborhood systems and relational database. In: Proc. of the CSC’88. New York, 1988. 725?726. http://portal.acm.org/citation.cfm?id=322609.323183
    [16] Lin TY. Granular computing on binary relations I: Data mining and neighborhood systems, II: Rough set representations and belief functions. Skowron A, Polkowski L, eds. Rough Sets in Knowledge Discovery. Physica-Verlag, 1998. 107?140. http://xanadu.cs.sjsu.edu/~tylin/classes/cs267_old/final/id2/267_2_116_add.pdf
    [17] Lin TY. Granular computing: Fuzzy logic and rough sets. In: Zadeh LA, et al., eds. Proc. of the Information/Intelligent Systems. Physica-Verlag, 1999. 183?200.
    [18] Lin TY. Data mining and machine oriented modeling: A granular computing approach. Journal of Applied Intelligence, 2000,13(2): 113?124. [doi: 10.1023/A:1008384328214]
    [19] Lin TY. Granular computing: A problem solving paradigm. In: Proc. of the 2005 IEEE Int’l Conf. on Fuzzy Systems. Atlantis Casino Resort Reno, 2005. 132?137. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01452381
    [20] Dubois D, Prade H. Putting rough sets and fuzzy sets together. In: Slowingski R, ed. Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory. Boston: Kluwer Academic Publishers, 1992. 203?232.
    [21] Banerjee M, Pal SK. Roughness of fuzzy set. Information Sciences, 1996,93:235?246. [doi: 10.1016/0020-0255(96)00081-3]
    [22] Chakrabarty K, Biswas R, Nanda S. Fuzziness in rough sets. Fuzzy Sets and Systems, 2000,110(2):247?251. [doi: 10.1016/S0165-0114(97)00414-4]
    [23] Wille R. Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts. Reidel: Dor-drecht-Boston, 1982.
    [24] Zhang YQ, Fraser MD, Gagliano RA. Granular neural networks for numerical-linguistic data fusion and knowledge discovery. IEEE Trans. on Neural Networks, 2000,11(3):658?667. [doi: 10.1109/72.846737]
    [25] Zhang YQ. Constructive granular systems with universal approximation and fast knowledge discovery. IEEE Trans. on Fuzzy Systems, 2005,13(1):48?57. [doi: 10.1109/TFUZZ.2004.839657]
    [26] Wang GY, He X. A self-learning model under uncertain condition. Journal of Software, 2003,14(6):1096?1102 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/14/1096.htm
    [27] Wang GY. Domain-Oriented data-driven data mining based on rough set. Journal of Nanchang Institute of Technology, 2006,25(2): 46.
    [28] Feng NQ. Research on fuzzy measure of fuzzy concept. PR & AI, 2002,15(3):290?294 (in Chinese with English abstract).
    [29] Wang GY, Zhao J, An JJ, Wu Y. A comparative study of algebra viewpoint and information viewpoint in attribute reduction. Fundamenta Informaticae, 2005,68(3):289?301.
    [30] Zhao J, Wang GY. Research on system uncertainty measures based on rough set theory. In: Wang GY, et al., eds. Proc. of the RSKT 2006. LNAI 4062, 2006. 227?232. http://www.springerlink.com/content/qw68621788l76x17/ [doi: 10.1007/11795131_33]
    [31] Liang JY, Chin KS, Dang CY. A new method for measuring uncertainty and fuzziness in rough set theory. Int’l Journal of General Systems, 2002,31(4):331?342. [doi: 10.1080/0308107021000013635]
    [32] Liang JY, Shi ZZ. The information entropy, rough entropy and knowledge granulation in rough set theory. Int’l Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2004,12(1):37?46. [doi: 10.1142/S0218488504002631]
    [33] Miao DQ, Fan SD. The calculation of knowledge granulation and its application. Systems Engineering-Theory & Practice, 2002, 22(1):48?56 (in Chinese with English abstract).
    [34] Miao DQ, Wang J. An information representation of the concepts and operations in rough set theory. Journal of Software, 1999, 10(2):113?116 (in Chinese with English abstract). http://www.jos.org.cn/ch/reader/view_abstract.aspx?flag=1&file_no=19990201&journal_id=jos
    [35] Miao DQ, Wang GY, Liu Q, Lin ZY, Yao YY. Granular Computing: Past, Present and Future Prospects. Beijing: Science Press, 2007 (in Chinese).
    [36] Wang GY. Rough Set Theory and Knowledge Discovery. Xi’an: Xi’an Jiaotong University Press, 2001 (in Chinese).
    [37] Zhang WX, Wu WZ, Liang JY, Li DY. Theory and Methods of Rough Sets. Beijing: Science Press, 2001 (in Chinese).
    [38] Liu XC. Entropy, distance measure and similarity measure of fuzzy sets and their relations. Fuzzy Sets Systems, 1992,52(3): 305?318. [doi: 10.1016/0165-0114(92)90239-Z]
    [39] Beaubouef T, Petry FE, Arora G. Information-Theoretic measures of uncertainty for rough sets and rough relational databases. Information Sciences, 1998,109(1-4):185?195. [doi: 10.1016/S0020-0255(98)00002-4]
    [40] Qian YH, Liang JY. Combination entropy & combination granulation in rough set theory. Int’l Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2008,16(2):179?193. [doi: 10.1142/S0218488508005121]
    [41] Qian YH, Liang JY. Combination entropy and combination granulation in incomplete information system. Lecture Notes in Artificial Intelligence, 2006,4062:184?190.
    [42] Zadeh L. Fuzzy sets and information granularity. In: Gupta N, Ragade R, Yager R, eds. Advances in Fuzzy Set Theory and Applications. Amsterdam: North-Holland Publishing Co., 1979. 3?18.
    [43] Wang JH, Liang JY, Qian YH, Dang CY. Uncertainty measure of rough sets based on a knowledge granulation for incomplete information systems. Int’l Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2008,16(2):233?244. [doi: 10.1142/S0218488508005157]
    [44] Liang JY, Shi ZZ, Li DY, Wireman MJ. Information entropy, rough entropy and knowledge granulation in incomplete information systems. Int’l Journal of General Systems, 2006,34(1):641?654. [doi: 10.1080/03081070600687668]
    [45] Zhang L, Zhang B. The Theory and Applications of Problem Solving-Quotient Space Based Granular Computing. 2nd ed., Beijing: Tsinghua University Press, 2007 (in Chinese).
    [46] Zhang L, Zhang B. The structural analysis of fuzzy sets. Journal of Approximate Reasoning, 2005,40(1-2):92?108. [doi: 10.1016/j.ijar.2004.11.010]
    [47] Tang XQ, Zhu P, Cheng JX. Cluster analysis based on fuzzy quotient space. Journal of Software, 2008,19(4):861?868 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/19/861.htm [doi: 10.3724/SP.J.1001.2008.00861]
    [48] Zhang QH, Wang GY, Ma XA, He XX. The information entropy sequence of hierarchical structure. In: Proc. of the ISKE 2009. 2009. 82?87. [doi: 10.1142/9789814295062_ 0013]
    [49] Dubios D, Prade H. Rough fuzzy sets and fuzzy rough sets. Int’l Journal of General Systems, 1990,17:191?208. [doi: 10.1080/03081079008935107]
    [50] Miao DQ, Wang J. Information-Based algorithm for reduction of knowledge. In: Proc. of the IEEE ICIPS’97. 1997. 1155?1158. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=669168&tag=1 [doi: 10.1109/ICIPS.1997.669168]
    [51] Yao YY. A comparative study of fuzzy sets and rough sets. Information Sciences, 1998,109(1-4):227?242. [doi: 10.1016/S0020-0255(98)10023-3]
    [52] Wu WZ, Mi JS, Zhang WX. Generalized fuzzy rough sets. Information Sciences, 2003,151:263?282. [doi: 10.1016/S0020-0255(02)00379-1]
    [53] Zhu W, Wang FY. Reduction and axiomization of covering generalized rough sets. Information Science, 2003,152:217?230. [doi: 10.1016/S0020-0255(03)00056-2]
    [54] Zhu W, Wang FY. Covering based granular computing for conflict analysis. In: Proc. of the IEEE ISI 2006. LNCS 3975, 2006. 566?571. http://www.springerlink.com/content/n422l75737406302/ [doi: 10.1007/11760146_58]
    [55] Wei L, Miao DQ, Xu FF. Research on a covering rough fuzzy set model. Journal of Computer Research and Development, 2006, 43(10):1719?1723 (in Chinese with English abstract). [doi: 10.1360/crad20061007]
    [56] Xu ZY, Liao JQ. On the covering fuzzy rough sets model. Fuzzy System and Mathematics, 2006,20(3):141?144 (in Chinese with English abstract).
    [57] Hu J, Wang GY, Zhang QH. Uncertainty measure of covering generated rough set. In: Proc. of the 2006 IEEE/WIC/ACM Int’l Conf. on Web Intelligence and Intelligent Agent Technology (WI-IAT 2006 Workshops) (WI-IATW 2006). Hong Kong, 2006. 498?504. [doi: 10.1109/WI-IATW.2006.139]
    [58] Hu J, Wang GY, Fu A. Knowledge reduction of covering approximation space. In: Proc. of the 6th IEEE Int’l Conf. on Cognitive Informatics (ICCI 2007). 2007. 140?144. [doi: 10.1109/COGINF.2007.4341884]
    [59] Xu FF, Miao DQ, Li DG, Wei R. Rough entropy of rough fuzzy sets based on covering. Computer Science, 2006,33(10):179?181 (in Chinese with English abstract).
    [60] Xu WH, Zhang WX. Fuzziness of covering generalize rough sets. Fuzzy Systems and Mathematics, 2006,20(6):115?121 (in Chinese with English abstract).
    [61] Wei R, Liu BC, Shi KQ. Fuzziness based on covering generalized rough sets. Computer Science, 2007,34(1):153?155 (in Chinese with English abstract).
    [62] Hu KY, Lu YC, Shi CY. Advances in concept lattice and its application. Journal of Tsinghua University, 2000,40(9):77?81 (in Chinese with English abstract).
    [63] Guo ZX, Mi JS. An uncertainty measure in rough fuzzy sets. Fuzzy Systems and Mathematics, 2005,19(4):135?140 (in Chinese with English abstract).
    [64] Huang B, He X, Zhou XZ. Rough entropy based on generalized rough sets covering reduction. Journal of Software, 2004,15(2): 215?220 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/15/215.htm
    [65] Yang LB, Gao YY. Fuzzy Mathematics: Theory and Application. Guangzhou: South China University of Technology Press, 2004 (in Chinese).
    [66] Hu J, Wang GY. Fuzziness of covering base generalized rough sets. Journal of Chongqing University of Posts and Telecommunications, 2009,21(4):490?493 (in Chinese with English abstract).
    [67] Zhang WX, Qiu GF. Uncertain Decision Making Based on Rough Sets. Beijing: Tsinghua University Press, 2005 (in Chinese).
    [68] Qu KS, Zhai YH. Posets, inclusion degree theory and FCA. Chinese Journal of Computers, 2006,29(2):219?226 (in Chinese with English abstract).
    [69] Zhang WX, Xu ZB, Liang Y, Liang GX. Inclusion degree theory. Fuzzy Systems and Mathematics, 1996,10(4):1?9 (in Chinese with English abstract).
    [70] Zhang WX, Liang GX, Liang Y. Including degree and its applications to artificial intelligence. Journal of Xi’an Jiaotong University, 1995,29(8):111?116 (in Chinese with English abstract).
    [71] Liang Y, Zhang WX. The degree of the consistency on fuzzy rules and the method to delete rules. Chinese Journal of Computers, 1997,20(10):947?952 (in Chinese with English abstract).
    [72] Liang JY, Xu ZB, Li YX. Inclusion degree and measures of rough set data analysis. Chinese Journal of Computers, 2001,24(5): 544?547 (in Chinese with English abstract).
    [73] Liang GX, Zhang WX. Including degree and its application to expert system. Journal of Engineering Mathematics, 1994,11(4): 13?24 (in Chinese with English abstract).
    [74] Wang GY, Wang Y. 3DM: Domain-Oriented data-driven data mining. Fundamenta Informaticae, 2009,90(4):395?426. [doi:10.3233/FI-2009-0026]
    [75] Wang GY, Hu J, Zhang QH, Liu XQ, Zhou JQ. Granular computing based data mining in the views of rough set and fuzzy set. In: Proc. of the 2008 IEEE Int’l Conf. on Granular Computing (IEEE GrC 2008). Hangzhou, 2008. 67. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4664791 [doi: 10.1109/GRC.2008.4664791]
    [76] Wang GY. Domain-Oriented data-driven data mining (3DM): Simulation of human knowledge understanding. In: Zhong N, Liu J, Yao Y, Wu J, Lu S, Li K, eds. Proc. of the WImBI 2006. LNCS 4845, 2007. 278?290. http://www.springerlink.com/content/c30617tw884632mr/ [doi: 10.1007/978-3-540-77028-2_16]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王国胤,张清华,马希骜,杨青山.知识不确定性问题的粒计算模型.软件学报,2011,22(4):676-694

复制
分享
文章指标
  • 点击次数:8517
  • 下载次数: 13738
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2010-01-15
  • 最后修改日期:2010-10-11
文章二维码
您是第19894749位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号