半监督降维方法的实验比较
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(60875030); 模式识别国家重点实验室开放课题(20090044)


Experimental Comparisons of Semi-Supervised Dimensional Reduction Methods
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    半监督学习是近年来机器学习领域中的研究热点之一,已从最初的半监督分类和半监督聚类拓展到半监督回归和半监督降维等领域.目前,有关半监督分类、聚类和回归等方面的工作已经有了很好的综述,如Zhu 的半监督学习文献综述.降维一直是机器学习和模式识别等相关领域的重要研究课题,近年来出现了很多将半监督思想用于降维,即半监督降维方面的工作.有鉴于此,试图对目前已有的一些半监督降维方法进行综述,然后在大量的标准数据集上对这些方法的性能进行实验比较,并据此得出了一些经验性的启示.

    Abstract:

    Semi-Supervised learning is one of the hottest research topics in the technological community, which has been developed from the original semi-supervised classification and semi-supervised clustering to the semi-supervised regression and semi-supervised dimensionality reduction, etc. At present, there have been several excellent surveys on semi-supervised classification: Semi-Supervised clustering and semi-supervised regression, e.g. Zhu’s semi-supervised learning literature survey. Dimensionality reduction is one of the key issues in machine learning, pattern recognition, and other related fields. Recently, a lot of research has been done to integrate the idea of semi-supervised learning into dimensionality reduction, i.e. semi-supervised dimensionality reduction. In this paper, the current semi-supervised dimensionality reduction methods are reviewed, and their performances are evaluated through extensive experiments on a large number of benchmark datasets, from which some empirical insights can be obtained.

    参考文献
    相似文献
    引证文献
引用本文

陈诗国,张道强.半监督降维方法的实验比较.软件学报,2011,22(1):28-43

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-12-18
  • 最后修改日期:2010-07-28
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号