半监督降维方法的实验比较
作者:
基金项目:

国家自然科学基金(60875030); 模式识别国家重点实验室开放课题(20090044)


Experimental Comparisons of Semi-Supervised Dimensional Reduction Methods
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [47]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    半监督学习是近年来机器学习领域中的研究热点之一,已从最初的半监督分类和半监督聚类拓展到半监督回归和半监督降维等领域.目前,有关半监督分类、聚类和回归等方面的工作已经有了很好的综述,如Zhu 的半监督学习文献综述.降维一直是机器学习和模式识别等相关领域的重要研究课题,近年来出现了很多将半监督思想用于降维,即半监督降维方面的工作.有鉴于此,试图对目前已有的一些半监督降维方法进行综述,然后在大量的标准数据集上对这些方法的性能进行实验比较,并据此得出了一些经验性的启示.

    Abstract:

    Semi-Supervised learning is one of the hottest research topics in the technological community, which has been developed from the original semi-supervised classification and semi-supervised clustering to the semi-supervised regression and semi-supervised dimensionality reduction, etc. At present, there have been several excellent surveys on semi-supervised classification: Semi-Supervised clustering and semi-supervised regression, e.g. Zhu’s semi-supervised learning literature survey. Dimensionality reduction is one of the key issues in machine learning, pattern recognition, and other related fields. Recently, a lot of research has been done to integrate the idea of semi-supervised learning into dimensionality reduction, i.e. semi-supervised dimensionality reduction. In this paper, the current semi-supervised dimensionality reduction methods are reviewed, and their performances are evaluated through extensive experiments on a large number of benchmark datasets, from which some empirical insights can be obtained.

    参考文献
    [1] Duda RO, Hart PE, Stork DG. Pattern Classification. 2nd ed., New York: John Wiley & Sons, 2001. 170.
    [2] van der Maaten L, Postma E, van den Herik J. Dimension reduction: A comparative review. Technical Report, TiCC-TR 2009-005, Tilburg University, 2009.
    [3] Hotelling H. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 1933,24(6):417-441 . [doi: 10.1037/h0071325]
    [4] Fisher RA. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 1936,7(2):179-188 .
    [5] Zhu X. Semi-Supervised learning literature survey. Technical Report, Computer Sciences TR 1530, Department of Computer Sciences, University of Wisconsin at Madison, 2008.
    [6] Chapelle O, Scholkopf B, Zien A, eds. Semi-Supervised Learning. Cambridge: MIT Press, 2006.
    [7] Baudat G, Anouar F. Generalized discriminant analysis using a kernel approach. Neural Computation, 2000,12(10):2385-2404 . [doi: 10.1162/089976600300014980]
    [8] Yan S, Xu D, Zhang B, Zhang HJ. Graph embedding and extensions a general framework for dimensionality reduction. In: Proc. of the CVPR 2005. San Diego, 2005. [doi: 10.1109/CVPR.2005.170]
    [9] Sugiyama M. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. Journal of Machine Learning Research, 2007,8(5):1027-1061 .
    [10] Hoi S, Liu W, Lyu MR. Learning distance metrics with contextual constraints for image retrieval. In: Proc. of the CVPR 2006. New York: IEEE Computer Society, 2006. 2076-2078 . [doi:10.1109/CVPR.2006.167]
    [11] Torgerson WS. Multidimensional scaling: Theory and method. Psychometrika, 1952,17(4):401-419 . [doi: 10.1007/BF02288916]
    [12] Lee DD, Seung HS. Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2001. http://books.nips.cc/papers/files/nips13/LeeSeung.pdf
    [13] Scholkopf B, Smola AJ, Muller KR. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10(5):1299-1319 . [doi: 10.1162/089976698300017467]
    [14] Weinberger KQ, Sha F, Saul LK. Learning a kernel matrix for nonlinear dimensionality reduction. In: Proc. of the ICML 2006. Pittsburgh, 2006. [doi: 10.1145/1015330.1015345]
    [15] Tenenbaum JB, de Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(5500):2319-2323 . [doi: 10.1126/science.290.5500.2319]
    [16] Roweis ST, Saul LK. Nonlnear dimensionality reduction by locally linear embedding. Science, 2000,290(5500):2323-2326 .
    [17] Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems, Vol.17. Cambridge: MIT Press, 2003. http://books.nips.cc/papers/ files/ nips14/AA42.pdf
    [18] He X, Niyogi P. Locality preserving projections. In: Thrun S, Saul L, Sch?lkopf B, eds. Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2003. http://books.nips.cc/papers/files/nips16/NIPS2003_AA20.pdf
    [19] Tipping E, Bishop CM. Probabilistic principal component analysis. Journal of the Royal Statistical Society, 1999,B(61):611-622 .
    [20] Yu S, Yu K, Tresp V, Kriegel HP, Wu M. Supervised probabilistic principal component analysis. In: Proc. of the KDD 2006. New York: ACM, 2006. 464-473 . [doi:10.1145/1150402.1150454]
    [21] Costa JA, Hero AO. Classification constrained dimensionality reduction. In: Proc. of the ICASSP 2005, Vol.5. Philadelphia, 2005. 1077-1080 . [doi: 10.1109/ICASSP.2005.1416494]
    [22] Cai D, He X, Han J. Semi-Supervised discriminant analysis. In: Proc. of the ICCV 2007. Rio de Janeiro, 2007. 1-7 . [doi: 10.1109/ICCV.2007.4408856]
    [23] Song Y, Nie F, Zhang C, Xiang S. A unified framework for semi-supervised dimensionality reduction. Pattern Recognition, 2008, 41(9):2789-2799 . [doi: 10.1016/j.patcog.2008.01.001]
    [24] Zhang Y, Yeung D. Simi-Supervised discriminant analysis using robust path-based similarity. In: Proc. of the CVPR 2008. Anchorage, 2008. 1-8 . [doi: 10.1109/CVPR.2008.4587357]
    [25] Zhang Y, Yeung D. Semi-Supervised discriminant analysis via CCCP. In: Proc. of the ECML PKDD 2008. Berlin, Heidelberg: Springer-Verlag, 2008. 644-659 . [doi: 10.1007/978-3-540-87481-2_42]
    [26] Chen J, Ye J, Li Q. Integrating global and local structures: A least squares framework for dimensionality reduction. In: Proc. of the CVPR 2007. Minneapolis, 2007. 1-8 . [doi: 10.1109/CVPR.2007.383040]
    [27] Sugiyama M, Ide T, Nakajima S, Sese J. Semi-Supervised local fisher discriminant analysis for dimensionality reduction. Machine Learning, 2008,78(1-2):35-61 . [doi: 10.1007/s10994-009-5125-7]
    [28] Chatpatanasiri R, Kijsirikul B. A unified semi-supervised dimensionality reduction framework for manifold learning. Neurocomputing, 2010,73(10-12):1631-1640 . [doi: 10.1016/j.neucom.2009.10.024]
    [29] Cai D, He X, Han J. Document clustering using locality preserving indexing. IEEE Trans. on Knowledge and Data Engineering, 2005,17(12):1624-1637 .
    [30] Tang W, Zhong S. Pairwise constraints-guided dimensionality reduction. In: Proc. of the Workshop on Feature Selection for Data Mining (SDM 2006). Bethesda, 2006. http://www.siam.org/meetings/sdm06/workproceed/FSDM/FSDM-proceedings2006.pdf# page=64
    [31] Bar-Hillel A, Hertz T, Shental N, Weinshall D. Learning a mahalanobis metric from equivalence constraints. Journal of Machine Learning Research, 2006,6(6):937-965 .
    [32] Zhang D, Zhou Z, Chen S. Semi-Supervised dimensionality reduction. In: Proc. of the SDM 2007. Minneapolis, 2007. 629-634 . http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.92.8730
    [33] Cevikalp H, Verbeek J, Jurie F, Klaser A. Semi-Supervised dimensionality reduction using pairwise equivalence constraints. In: Proc. of the VISAPP 2008. Funchal, 2008. 489-496 . http://eprints.pascal-network.org/archive/00003909/01/Constrained_ Clustering.pdf.
    [34] Wei J, Peng H. Neighbourhood preserving based semi-supervised dimensionality reduction. Electronics Letters, 2008,44(20): 1190-1191 .
    [35] Baghshah MS, Shouraki SB. Semi-Supervised metric learning using pairwise constraints. In: Proc. of the IJCAI 2009. San Francisco: Morgan Kaufmann Publishers, 2009. 1217-1222 .
    [36] Chen Y, Rege M, Dong M, Hua J. Incorporating user provided constraints into document clustering. In: Proc. of the ICDM 2007. Washington: IEEE Computer Society, 2007. 103-112 . [doi: 10.1109/ICDM.2007.67]
    [37] Peng Y,Zhang DQ. Semi-Supervised canonical correlation analysis algorithm. Journal of Software, 2008,19(11):2822-2832 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/19/2822.htm [doi: 10.3724/SP.J.1001.2008.02822]
    [38] Davidson I. Knowledge driven dimension reduction for clustering. In: Proc. of the IJCAI 2009. San Francisco: Morgan Kaufmann Publishers, 2009. 1034-1039 .
    [39] Xiang S, Nie F, Zhang C. Learning a mahalanobis distance metric for data clustering and classification. Pattern Recognition, 2008,41(12):3600-3612 . [doi: 10.1016/j.patcog.2008.05.018]
    [40] Lin Y, Liu T, Chen H. Semantic manifold learning for image retrieval. In: Proc. of the MM 2005. New York: ACM, 2005. 249-258 . [doi: 10.1145/1101149.1101193]
    [41] Yu J, Tian Q. Learning image manifolds by semantic subspace projection. In: Proc. of the MM 2006. New York: ACM, 2006. 297-306 . [doi: 10.1145/1180639.1180710]
    [42] Liu W, Jiang W, Chang SF. Relevance aggregation projections for image retrieval. In: Proc. of the CIVR 2008. New York: ACM, 2008. 119-126 . [doi: 10.1145/1386352.1386372]
    [43] Yang X, Fu H, Zha H, Barlow J. Semi-Supervised nonlinear dimensionality reduction. In: Proc. of the ICML 2006. New York: ACM, 2006. 1065-1072 . [doi: 10.1145/1143844.1143978]
    [44] Memisevic R, Hinton G. Multiple relational embedding. In: Saul L, Weiss Y, Bottou L, eds. Advances in Neural Information Processing Systems, Vol.17. Cambridge: MIT Press, 2004. http://books.nips.cc/papers/files/nips17/NIPS2004_0835.pdf
    [45] Levina E, Bickel PJ. Maximum likelihood estimation of intrinsic dimension. In: Saul L, Weiss Y, Bottou L, eds. Advances in Neural Information Processing Systems, Vol.17. Cambridge: MIT Press, 2004. http://books.nips.cc/papers/files/ nips17/ NIPS2004_ 0094.pdf
    [46] Wright J, Yang A, Sastry S, Ma Y. Robust face recognition via sparse representation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009,31(2):210-227 . [doi: 10.1109/TPAMI.2008.79]
    [47] Qiao L, Chen S, Tan X. Sparsity preserving projections with applications to face recognition. Pattern Recognition, 2010,43(1): 331-341 . [doi: 10.1016/j.patcog.2009.05.005]
    相似文献
引用本文

陈诗国,张道强.半监督降维方法的实验比较.软件学报,2011,22(1):28-43

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-12-18
  • 最后修改日期:2010-07-28
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号