高速长距离网络传输协议
基金项目:

Supported by the National High-Tech Research and Development Plan of China under Grant No.2007AA01Z214 (国家高技术研究发展计划(863)); the Knowledge Innovation Program of the Chinese Academy of Sciences under Grant No.CNIC_QN_08004 (中国科学院知识创新工程青年人才领域项目)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [68]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    传统的TCP传输协议在高速长距离网络中存在许多局限,其传输性能不能满足日益增长的海量数据传输应用的需求.UDP传输协议尽管传输速率很高,却没有可靠性保证.分析了传统的传输协议在高速长距离网络中的局限,分类总结了近年来提出的各种改进的传输协议的主要设计思想以及在传输协议性能评价方面的工作,最后提出了目前研究中仍然存在的开放性问题和进一步的研究方向.

    Abstract:

    The traditional TCP transport protocol has many drawbacks on Fast Long Distance Networks (FLDnet), and its transfer performance can not satisfy the requirement of increasing bulk data transfer applications. The UDP transport protocol has high transfer speed on FLDnet, but its reliability can not be guaranteed. This paper firstly analyzes the drawbacks of the traditional transport protocols on FLDnet, then, classifies and summarizes the main design principles of all kinds of enhanced transport protocols proposed in recently years and the research work on performance evaluation of transport protocols. Finally, some open issues and further research directions are proposed.

    参考文献
    [1] Ren YM, Qin G, Tang HN, Li J, Qian HL. Performance analysis of transport protocol over fast long distance optical network. Chinese Journal of Computers, 2008,31(10):1679?1686 (in Chinese with English abstract).
    [2] Stewart R, Xie Q, Morneault K, Sharp C, Schwarzbauer H, Taylor T, Kytina I, Kalla M, Zhang L, Paxson V. Stream control transmission protocol. RFC 2960, Internet Engineering Task Force, 2000.
    [3] Schulzrinne H, Casner S, Frederick R, Jacobson V. RTP: A transport protocol for real-time applications. RFC 3550, Internet Engineering Task Force, 2003.
    [4] Schulzrinne H, Rao A, Lanphier R. Real time streaming protocol (RTSP). RFC 2326, Internet Engineering Task Force, 1998.
    [5] Kohler E, Handley M, Floyd S. Designing DCCP: Congestion control without reliability. ACM SIGCOMM Computer Communication Review, 2006,36(4):27?38.
    [6] Floyd S. High speed TCP for large congestion windows. IETF RFC 3649, 2003.
    [7] Kelly T. Scalable TCP: Improving performance in high-speed wide area networks. Computer Communication Review, 2003,33(2): 83?91. [doi 10.1145/956981.956989]
    [8] Xu L, Harfoush K, Rhee I. Binary increase congestion control for fast long-distance networks. In: Proc. of the INFOCOM. 2004. 2514?2524. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=135467
    [9] Ha S, Rhee I, Xu LS. CUBIC: A new TCP-friendly high-speed TCP variant. ACM SIGOPS Operating System Review, 2008,42(5): 64?74. [doi: 10.1145/1400097.1400105]
    [10] Floyd S, Allman M, Jain A, Sarolahti P. Quick-Start for TCP and IP. RFC 4782, 2007.
    [11] Hacker TJ, Smith PM. Stochastic TCP: A statistical approach to congestion avoidance. In: Proc. of the PFLDnet2008. Manchester, 2008. http://www.cs.unc.edu/~aikat/diss/docs/papers-notes/papers/hacker_pfldnet_2008_stochasticTCP.pdf
    [12] Shorten RN, Leith DJ. H-TCP: TCP for high-speed and long-distance networks. In: Proc. of the PFLDnet. Argonne, 2004. http://www.hamilton.ie/net/htcp3.pdf
    [13] Jin C, Wei DX, Low SH. FAST TCP: Motivation, architecture, algorithms, performance. IEEE/ACM Trans. on Networking, 2006, 14(6):1246?1259. [doi: 10.1109/TNET.2006.886335]
    [14] Bhandarkar S, Reddy ALN, Zhang Y, Loguinov D. Emulating AQM from end hosts. ACM SIGCOMM Computer Communication Review, 2007,37(4):349?360.
    [15] Katabi D, Handley M, Rohrs C. Congestion control for high bandwidth-delay product networks. ACM SIGCOMM Computer Communication Review, 2002,32(4):89?102.
    [16] Xia Y, Subramanian L, Stoica I, Kalyanaraman S. One more bit is enough. ACM SIGCOMM Computer Communication Review, 2005,35(4):37?48. [doi: 10.1145/1090191.1080098]
    [17] Zhang Y, Leonard D, Loguinov D. JetMax: Scalable max-min congestion control for high-speed heterogeneous networks. In: Proc. of the IEEE INFOCOM. 2006. 1?13.
    [18] Huang XM, Lin C, Ren FY. A novel high speed transport protocol based on explicit virtual load feedback. Computer Networks, 2007,51(7):1800?1814. [doi: 10.1016/j.comnet.2006.11.003]
    [19] Huang XM, Lin C, Ren FY, Peter D, Wang YZ. Improving the convergence and stability of congestion control algorithm. In: Proc. of the 15th IEEE Int’l Conf. on Network Protocols (ICNP 2007). Beijing, 2007. 206?215.
    [20] Krishnan R, Sterbenz J, Eddy W, Partridge C, Allman M. Explicit transport error notification (ETEN) for error-prone wireless and satellite networks. Computer Networks, 2004,46(3):343?362.
    [21] Fox R. TCP big window and nak options. RFC 1106, 1989.
    [22] Mathis M, Mahdavi J, Floyd S, Romanow A. TCP selective acknowledgement options. RFC 2018, 1996.
    [23] Durst RC, Miller GJ, Travis EJ. TCP extension for space communications. Wireless Networks, 1997,3(5):389?403.
    [24] SCPS transport protocol (SCPS-TP). 1997. http://www.scps.org/index.html
    [25] Cheng RS, Lin HT. TCP selective negative acknowledgment over IEEE 802.11 wireless networks. In: Proc. of the Int’l Conf. on Networking and Services (ICNS 2006). Silicon Valley, 2006. 98.
    [26] Cheng RS, Lin HT. Improving TCP performance with bandwidth estimation and selective negative acknowledgment in wireless networks. Journal of Communications and Networks, 2007,9(3):236?246.
    [27] Sun FL, Li VOK, Liew SC. Design of SNACK mechanism for wireless TCP with new snoop. In: Proc. of the IEEE WCNC 2004. Atlanta, 2004. 1051?1056.
    [28] Ren YM, Tang HN, Li J, Qian HL. Improving TCP performance with selective negative acknowledgement in hybrid optical packet network. In: Proc. of the Int’l Conf. on Computer and Network Technology (ICCNT 2009). Chennai: World Scientific Press, 2009. 122?128.
    [29] He E, Leigh J, Yu O, DeFanti T. Reliable blast UDP: Predictable high performance bulk data transfer. In: Proc. of the IEEE Int’l Conf. on Cluster Computing. 2002. 317?324. [doi: 10.1109/CLUSTR.2002.1137760]
    [30] Meiss MR. Tsunami: A high-speed rate-controlled protocol for file transfer. 2002. http://www.evl.uic.edu/eric/atp/TSUNAMI.pdf/
    [31] Gu YH, Grossman RL. UDT: UDP-Based data transfer for high-speed wide area networks. Computer Networks, 2007,51(7): 1777?1799. [doi: 10.1016/j.comnet.2006.11.009]
    [32] Larzon LA, Degermark M, Pink S, Jonsson LE, Fairhurst G. The lightweight user datagram protocol (UDP-Lite). RFC 3828, 2004.
    [33] Ren YM, Tang HN, Li J, Qian HL. A novel congestion control algorithm for high performance bulk data transfer. In: Proc. of the IEEE Int’l Symp. on Network Computing and Applications (NCA 2009). Cambridge: IEEE Computer Society, 2009. 288?291.
    [34] Gu YH, Grossman R. SABUL: A transport protocol for grid computing. Journal of Grid Computing, 2003,1(4):377?386. [doi: 10.1023/B:GRID.0000037553.18581.3b]
    [35] Wu RX, Chien AA. GTP: Group transport protocol for lambda-grids. In: Proc. of the 4th IEEE/ACM Int’l Symp. on Cluster Computing and the Grid. Washington: IEEE Computer Society, 2004. 228?238.
    [36] Dickens PM. FOBS: A lightweight communication protocol for grid computing. Lecture Notes in Computer Science 2790, 2003. 938?946.
    [37] Vishwanath V, Leigh J, He E, Brown MD, Long L, Renambot L, Verlo A, Wang X, DeFanti TA. Wide area network experiments with Lambdastream over dedicate high bandwidth networks. In: Proc. of the IEEE INFOCOM 2006. Barcelona, 2006. http://www.startap.net/translight/papers/Vishwanath_IEEEInfocom2006.pdf
    [38] Zheng X, Mudambi AP, Veeraraghavan M. FRTP: Fixed rate transport protocol—A modified version of SABUL for end-to-end circuits. In: Proc. of the Pathnets2004 on Broadnet2004. San Jose, 2004. http://www.ece.virginia.edu/mv/pubs/workshops/ pathnets04/pathnets2004.pdf
    [39] Lopez-Pacheco DM, Pham C. Performance comparison of TCP, HSTCP and XCP in high-speed, highly variable-bandwidth environments. In: Proc. of the IEEE 3rd Int’l Conf. on Network Protocols (ICNP 2004). Berlin, 2004. http://web.univ-pau.fr/ ~cpham/Paper/ICNP04.pdf
    [40] Floyd S, Henderson T. The NewReno modification to TCP’s fast recovery algorithm. RFC 2582, 1999.
    [41] Chuvpilo G, Lee JW. A simulation based comparison between XCP and HighSpeed TCP. In: Computer Networks Final Project. Cambridge: Massachusetts Institute of Technology, 2002. http://www.how2setup.org/users/chuvpilo/papers/chuvpilo-2002-6.829- project.pdf
    [42] Zhang FJ, Pan L, Li JH. Performance comparison of TCP, high-speed TCP and XCP in high BDP network. Computer Engineering, 2006,32(2):113?116 (in Chinese with English abstract).
    [43] Jacobson V. Congestion avoidance and control. In: Proc. of the ACM SIGCOMM’88. 1988. 314?329.
    [44] Bullot H, Cottrell RL, Hughes-Jones R. Evaluation of advanced TCP stacks on fast long-distance production networks. Journal of Grid Computing, 2003,1(4):345?359.
    [45] Kuzmanovic A, Knightly EW. TCP-LP: A distributed algorithm for low priority data transfer. In: Proc. of the IEEE INFOCOM, Vol.3. San Francisco, 2003. 1691?1701.
    [46] Li YT, Leith D, Shorten RN. Experimental evaluation of TCP protocols for high-speed networks. IEEE/ACM Trans. on Networking, 2007,15(5):1109?1122. [doi: 10.1109/TNET.2007.896240]
    [47] Mathis M, Heffner J, Reddy R. Web100: Extended TCP instrumentation for research, education and diagnosis. ACM Computer Communications Review, 2003,33(3):69?79.
    [48] Ha S, Le L, Rhee I, Xu LS. Impact of background traffic on performance of high-speed TCP variant protocols. Computer Networks, 2007,51(7):1748?1762. [doi: 10.1016/j.comnet.2006.11.005]
    [49] Yang Z, Wu LD. Simulation-Based performance evaluation of TCP protocols for high-speed long distance networks. Computer Science, 2007,34(1):67?70 (in Chinese with English abstract).
    [50] Ren YM, Tang HN, Li J, Qian HL. Performance comparison of TCP variants for high-speed network by NS2 simulation. Computer Engineering, 2009,35(2):6?9 (in Chinese with English abstract).
    [51] Kumazoe K, Hori Y, Tsuru M, Qie YJ. Transport protocols for fast long distance networks: comparison of their performance in JGN. In: Proc. of the 2004 Int’l Symp. on Applications and the Internet Workshops (SAINTW 2004). Tokyo, 2004. 645. http://doi.ieeecomputersociety.org/10.1109/SAINTW.2004.1268701
    [52] Huang R, Chien A. Benchmarking high bandwidth delay product protocols. Technical Report, San Diego: Concurrent Systems Architecture Group, University of California, 2003. http://www-csag.ucsd.edu/papers/MicroGrid-p.html
    [53] Sivakumar H, Bailey S, Grossman RL. PSockets: The case for application-level network striping for data intensive applications using high speed wide area networks. In: Proc. of the SC 2000. Dallas, 2000. 38.
    [54] Anglano C, Canonico M. A comparative evaluation of high-performance file transfer systems for data-intensive grid applications. In: Proc. of the 13th IEEE Int’l Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE 2004). 2004. 283?288. http://doi.ieeecomputersociety.org/10.1109/ENABL.2004.2
    [55] Chun B, Culler D, Roscoe T, Bavier A, Peterson L, Wawrzoniak M, Bowman M. Planet-Lab: An overlay testbed for broad-coverage services. ACM SIGCOMM Computer Communications Review, 2003,33(3):3?12. http://www.planet-lab.org
    [56] The bbFTP-large files transfer protocols. Web Site. 2005. http://doc.in2p3.fr/bbftp/
    [57] Wu R, Chien A. Evaluation of rate-based transport protocols for Lambda-grids. In: Proc. of the 13th IEEE Int’l Symp. on High- Performance Distributed Computing (HPDC 2004). Honolulu, 2004. 87?96.
    [58] Chen M, McIntosh R, Leers F. Characterization and evaluation of TCP and UDP-based transport on real networks. In: Proc. of the PFLDnet 2005. Lyon, 2005. http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-10996.pdf
    [59] Wu R, Chien AA. Evaluation of end-node based rate allocation schemes for lambda networks. In: Proc. of the PFLDNet 2006. Nara, 2006. http://www-csag.ucsd.edu/papers/pfldnet2006.pdf
    [60] Ren YM, Tang HN, Li J, Qian HL. Performance comparison of UDP-based protocols over fast long distance network. Information Technology Journal, 2009,8(4):600?604. [doi: 10.3923/itj.2009.600.604]
    [61] Mudambi AP, Zheng X, Veeraraghavan M. A transport protocol for dedicated end-to-end circuits. In: Proc. of the IEEE Int’l Conf. on Communications (ICC 2006). 2006. 18?23.
    [62] Banerjee A, Feng WC, Mukherjee B, Ghosal D. RAPID: An end-system aware protocol for intelligent data transfer over Lambda grids. In: Proc. of the 20th Int’l Parallel and Distributed Processing Symp. (IPDPS 2006). Rhodes Island, 2006.
    [63] Eckart B, He XB, Wu QS. Performance adaptive UDP for high-speed bulk data transfer over dedicated links. In: Proc. of the IEEE Int’l Symp. on Parallel and Distributed Processing (IPDPS). Miami, 2008. 1?10.
    [64] Rapier C, Bennett B. High speed bulk data transfer using the SSH protocol. In: Proc. of the 15th ACM Mardi Gras Conf. (MG 2008). Baton Rouge, 2008.
    附中文参考文献: [1] 任勇毛,秦刚,唐海娜,李俊,钱华林.高速长距离光网络传输协议性能分析.计算机学报,2008,31(10):1679?1686.
    [42] 张福杰,潘理,李建华.大带宽时延积网络中TCP,High-Speed TCP及XCP性能比较.计算机工程,2006,32(2):113?116.
    [49] 杨征,吴玲达.基于仿真的高速长距离网络中TCP协议性能评价.计算机科学,2007,34(1):67?70.
    [50] 任勇毛,唐海娜,李俊,钱华林.高速网络TCP改进协议NS2仿真性能比较.计算机工程,2009,35(2):6?9.
引用本文

任勇毛,唐海娜,李 俊,钱华林.高速长距离网络传输协议.软件学报,2010,21(7):1576-1588

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-06-12
  • 最后修改日期:2009-12-29
文章二维码
您是第19728040位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号