一种关键任务系统自律可信性模型与量化分析
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.90718003, 60373000, 60973027 (国家自然科学基金); the National High-Tech Research and Development Plan of China under Grant No.2007AA01Z401 (国家高技术研究发展计划(863))


Model and Quantification of Autonomic Dependability of Mission-Critical Systems
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    将现有入侵容忍、自毁技术与自律计算相结合,提出了一种基于SM-PEPA(semi-Markov performance evaluation process algebra)的关键任务系统自律可信性模型以支持形式化分析和推理.该模型具有一定程度的自管理能力,采用分级处理的方式应对各种程度的可信性威胁,满足了关键任务系统对可信性的特殊需求.在此基础上,从稳态概率角度提出了一种自律可信性度量方法.最后,结合具体实例对模型参数对自律可信性的影响进行了初步分析.实验结果表明,增大关键任务系统可信性威胁检测率和自恢复成功率,可在较大范围内提高系统的自律可信 特性.

    Abstract:

    In this paper, the existing intrusion tolerance and self-destruction technology are integrated into autonomic computing in order to construct an autonomic dependability model based on SM-PEPA (semi-Markov performance evaluation process algebra) which is capable of formal analysis and verification. It can hierarchically anticipate Threats to dependability (TtD) at different levels in a self-management manner to satisfy the special requirements for dependability of mission-critical systems. Based on this model, a quantification approach is proposed on the view of steady-state probability to evaluate autonomic dependability. Finally, this paper analyzes the impacts of parameters of the model on autonomic dependability in a case study, and the experimental results demonstrate that improving the detection rate of TtD as well as the successful rate of self-healing will greatly increase the autonomic dependability.

    参考文献
    相似文献
    引证文献
引用本文

王慧强,吕宏武,赵倩,董玺坤,冯光升.一种关键任务系统自律可信性模型与量化分析.软件学报,2010,21(2):344-358

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-06-15
  • 最后修改日期:2009-12-07
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号