一种资源敏感的Web应用性能诊断方法
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant No.90718033 (国家自然科学基金); the National High-Tech Research and Development Plan of China under Grant Nos.2007AA01Z134, 2007AA010301 (国家高技术研究发展计划(863)); the National Basic Research Program of China under Grant No.2009CB320704 (国家重点基础研究发展计划(973)); the Major Science and Technology Project of China under Grant No.2009ZX01043-001-05 (国家科技重大专项)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    提出一种资源敏感的性能诊断方法.对于Web应用事务,该方法利用资源服务时间对于不同负载特征相对稳定的特点建立性能特征链,并依据运行时资源服务时间异常实现性能异常的有效检测、定位和诊断.实验结果表明,该方法可适应系统负载特征变化,诊断各种资源使用相关的性能异常.

    Abstract:

    This paper proposes a resource-aware performance diagnostic method. For transactions in Web applications, the proposed method constructs performance profile chains based on the resource service time, which is stable for different workload characteristics. According to the anomaly of resource service time at application runtime, the proposed method provides an efficient solution to performance anomaly detection, location and diagnosis. Experimental results show that this method can effectively detect performance anomalies caused by different resource bottlenecks with changing workload characteristics.

    参考文献
    [1] Kephart JO. Research challenges of autonomic computing. In: Proc. of the 27th Int’l Conf. on Software Engineering (ICSE 2005). New York: ACM Press, 2005. 15-22.
    [2] Cook B, Babu S, Candea G, Duan S. Toward self-healing multitier services. In: Proc. of the ICDE Workshops (SMDB 2007). Washington: IEEE Computer Society Press, 2007. 424-432.
    [3] Mercury diagnostics. http://www.mercury.com/us/products/diagnostics/
    [4] IBM Corporation. Tivoli Web management solutions. http://www-01.ibm.com/software/tivoli/
    [5] Computer Associates Co. Wily Introscope. http://www.ca.com/us/application-management.aspx
    [6] Cherkasova L, Fu Y, Tang W. Vahdat A. Measuring and characterizing end-to-end Internet service performance. ACM/IEEE Trans. on Internet Technology (TOIT), 2003,3(4):347-391.
    [7] Olshefski D, Nieh J. Understanding the management of client perceived response time. ACM SIGMETRICS Performance Evaluation Review, 2006,34(1):309-322.
    [8] Olshefski D, Nieh J, Agrawal D. Using certes to infer client response time at the Web server. ACM Trans. on Computer Systems (TOCS), 2004,22(1):49-93.
    [9] Agarwala S, Schwan K. Sysprof: Online distributed behavior diagnosis through fine-grain system monitoring. In: Proc. of the ICDCS. Washington: IEEE Computer Society Press, 2006.
    [10] Nimsoft Co. End user response monitoring. http://www.nimsoft.com/solutions/ete/index.php
    [11] Chen MY, Accardi A, Kiciman E, Patterson DA, Fox A, Brewer EA. Path-Based failure and evolution management. In: Proc. of the 2004 Networked Systems Design and Implementation. Berkeley: UC Berkeley, 2004. 309-322.
    [12] The Transaction Processing Council (TPC). TPC-W. 2002. http://www.tpc.org/tpcw
    [13] Chen H, Mohapatra P. Session-Based overload control in QoS-aware Web servers. In: Proc. of the IEEE INFOCOM 2002. New York: ACM Press, 2002. 516-524.
    [14] Chen X, Chen H, Mohapatra P. An admission control scheme for predictable server response time for Web accesses. In: Proc. of the 10th World Wide Web Conf. New York: ACM Press, 2001. 545-554.
    [15] Abdelzaher TF, Lu C. Modeling and performance control of Internet servers. In: Proc. of the 39th IEEE Conf. on Decision and Control. Washington: IEEE Computer Society Press, 2000. 2234-2239.
    [16] Diao Y, Gandhi N, Hellerstein J, Parekh S, Tilbury D. Using MIMO feedback control to enforce policies for interrelated metrics with application to the Apache Web server. In: Proc. of the Network Operations and Management Symp. New York: ACM Press, 2002. 219-234.
    [17] Fan GC, Zhong H, Huang T, Feng YL. A survey on Web application servers. Journal of Software, 2003,14(10):1728-1739 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/14/1728.htm
    [18] Barghouti NS, Kaiser GE. Concurrency control in advanced database applications. ACM Computing Surveys (CSUR), 1991,23(3): 269-317.
    [19] Agrawal R, Carey MJ, Livny M. Concurrency control performance modeling: Alternatives and implications. ACM Trans. on Database Systems (TODS), 1987,12(4):609-654.
    [20] Welsh M, Culler D, Brewer E. SEDA: An architecture for well-conditioned, scalable Internet services. In: Proc. of the 18th Symp. on Operating Systems Principles (SOSP). New York: ACM Press, 2001. 230-243.
    [21] Fleury M, Reverbel F. The JBoss extensible server. In: Endler M, Schmidt DC, eds. Proc. of the ACM/IFIP/USENIX Int’l Middleware Conf. (Middleware 2003). LNCS 2672, Riode Janeiro: Springer-Verlag, 2003. 344-373.
    [22] Harkema M, Quartel D, van der Mei R, Gijsen B. A Java performance monitoring tool. In: OOPSLA’98: Proc. of the 13th ACM SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages, and Applications. New York: ACM Press, 1998. 21–35.
    [23] Sun Microsystems. Sun studio 11: Performance analyzer. 2005. http://docs.sun.com/app/docs/doc/819-3687
    [24] Lazowska ED, Zahorjan J, Graham GS, Sevcik KC. Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Upper Saddle River: Prentice-Hall, Inc., 1984.
    [25] Oracle Co. Oracle enterprise manager. 2009. http://www.oracle.com/technology/products/oem/pdf/ds_as_dp.pdf
    [26] Casella G, Berger RL. Statistical Inference. Pacific Grove: Wadsworth Group, 2002.
    [27] Huang T, Chen NJ, Wei J, Zhang WB, Zhang Y. OnceAS/Q: A QoS-enabled Web application server. Journal of Software, 2004, 15(12):1787-1799 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/15/1787.htm
    [28] Menasce DA. TPC-W: A benchmark for e-commerce. IEEE Internet Computing, 2002,6(3):83-87.
    [29] Menascé DA. Automatic QoS control. IEEE Internet Computing, 2003,7(1):92-95.
    [30] Menascé DA, Dodge R, Barbará D. Preserving QoS of e-commerce sites through self-tuning: A performance model approach. In: Wellman MP, Shoham Y, eds. Proc. of the 3rd ACM Conf. on Electronic Commerce. New York: ACM Press, 2001. 224-234.
    [31] EJ Technologies. JProfiler ej-technologies. http://www.ej-technologies.com/products/jprofiler/overview.html
    [32] NetBeans Community. NetBeans profiler, Version 5.5. 2007. http://www.netbeans.org/products/profiler/index.html
    [33] Murray H, Engineer S, Associates I. Rules-of-Thumb for monitoring windows NT/2000 and domino statistics. http://www.ibm. com/developerworks/lotus/library/ls-Rules_WinNT2000/
    [34] Barham P, Donnelly A, Isaacs R, Mortier R. Using magpie for request extraction and workload modeling. In: Proc. of the 6th Symp. on Operating Systems Design and Implementation (OSDI 2004). Berkeley: USENIX Association, 2004. 18.
    [35] Bodden E, Hendren LJ, Lam P, Lhoták O, Naeem NA. Collaborative runtime verification with tracematches. In: Proc. of the 7th Int’l Workshop on Runtime Verification (RV). LNCS 4839, Berlin: Springer-Verlag, 2007. 22-37.
    [36] Cohen I, Goldszmidt M, Kelly T, Symons J, Chase J. Correlating instrumentation data to system states: A building block for automated diagnosis and control. In: Proc. of the 6th Symp. on Operating Systems Design and Implementation (OSDI 2004). Berkeley: USENIX Association, 2004. 16.
    [37] Zhang S, Cohen I, Symons J, Fox A. Ensembles of models for automated diagnosis of system performance problems. In: Proc. of the 2005 Int’l Conf. on Dependable Systems and Networks (DSN 2005). Washington: IEEE Computer Society Press, 2005. 644-653.
    [38] Cohen I, Zhang S, Goldszmidt M, Symons J, Kelly T, Fox A. Capturing, indexing, clustering, and retrieving system history. In: Proc. of the 20th ACM Symp. on Operating Systems Principles. New York: ACM Press, 2005. 105-118.
    [39] Kelly T. Detecting performance anomalies in global applications. In: Proc. of the 2nd Workshop on Real, Large Distributed Systems (WORLDS 2005). Berkeley: USENIX Association, 2005. 42-47.
    [40] Chen M, Kcman E, Fratkin E, Brewer E, Fox A. Pinpoint: Problem determination in large, dynamic Internet services. In: Proc. of the Symp. on Dependable Networks and Systems (IPDS Track). Washington: IEEE Computer Society Press, 2002. 595-604.
    [41] Kiciman E, Fox A. Detecting application-level failures in component-based Internet services. IEEE Trans. on Neural Networks, 2005,16(5):1027-1041.
    附中文参考文献: [17] 范国闯,钟华,黄涛,冯玉琳.Web应用服务器研究综述.软件学报,2003,14(10):1728-1739. http://www.jos.org.cn/1000-9825/14/ 1728.htm
    [27] 黄涛,陈宁江,魏峻,张文博,张勇.OnceAS/Q:一个面向QoS的Web应用服务器.软件学报,2004,15(12):1787-1799. http://www.jos. org.cn/1000-9825/15/1787.htm
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王伟,张文博,魏峻,钟华,黄涛.一种资源敏感的Web应用性能诊断方法.软件学报,2010,21(2):194-208

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-06-16
  • 最后修改日期:2009-12-07
文章二维码
您是第19727156位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号