BACH:线性混成系统有界可达性模型检验工具
作者:
基金项目:

国家自然科学基金(90818022, 61021062); 国家重点基础研究发展计划(973)(2009CB320702); 国家高技术研究发展计划(863)(2009AA01Z148, 2007AA010302)


BACH: A Toolset for Bounded Reachability Analysis of Linear Hybrid Systems
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    混成自动机的模型检验问题非常困难,即使是其中相对简单的一个子类——线性混成自动机,它的可达性问题仍然是不可判定的.现有的相关工具大都使用多面体计算来判定线性混成自动机状态空间的可达集,复杂度高、效率低,无法解决实际应用规模的问题.描述了一个面向线性混成系统有界可达性模型检验工具——BACH(bounded reachability checker),该工具能够沿指定路径(组)对单个线性混成自动机、多个线性混成自动机的组合进行可达性检验,并且在此基础上结合路径遍历技术完成对所有路径的有界可达性检验.实验数据显示,BACH 不仅在面向路径可达性检验方面性能优异,可以适用于足够长度的路径,而且在针对所有路径的有界可达性检验时,BACH 可以解决的问题规模也远远超过同类工具,已接近工业界应用的要求.

    Abstract:

    The model-checking problem for hybrid systems is very difficult to resolve. Even for a relatively simple class of hybrid systems, the class of linear hybrid automata, the most common problem of reachability is unsolvable. Existing techniques for the reachability analysis of linear hybrid automata do not scale well to problem sizes of practical interest. Instead of developing a tool to perform a reachability checking of the complete state space of linear hybrid automata, a prototype toolset BACH (bounded reachability checker) is presented to perform path-oriented reachability checking and bounded reachability checking of the linear hybrid automata and the compositional linear hybrid systems, where the length of the path being checked can be made very large, and the size of the system can be made large enough to handle problems of practical interest. The experiment data shows that BACH has good performance and scalability and supports the fact that BACH can become a powerful assistant for design engineers in the reachability analysis of linear hybrid automata.

    参考文献
    [1] Henzinger T. The theory of hybrid automata. In: Proc. of the 11th Annual IEEE Symp. on Logic in Computer Science (LICS’96). IEEE Computer Society Press, 1996. 278?292.
    [2] Kesten Y, Pnueli A, Sifakis J, Yovine S. Integration graphs: A class of decideable hybrid systems. In: Grossman R, Nerode A, Rvan A, Rischel H, eds. Proc. of the Hybrid System. LNCS 736, Springer-Verlag, 1993. 179?208. [doi: 10.1007/3-540-57318-6_29]
    [3] Alur R, Courcoubetis C, Halbwachs N, Henzinger TA, Ho PH, Nicollin X, Olivero A, Sifakis J, Yovine S. The algorithmic analysis of hybrid systems. Theoretical Computer Science, 1995,138:3?34. [doi: 10.1016/0304-3975(94)00202-T]
    [4] Henzinger T, Kopke PW, Puri A, Varaiya P. What’s decidable about hybrid automata? Journal of Computer and System Sciences, 1998,57(1):94?124.
    [5] Henzinger TA, Ho PH, Wong-Toi H. HYTECH: A model checker for hybrid systems. Software Tools for Technology Transfer, 1997,1:110?122. [doi: 10.1007/s100090050008]
    [6] Frehse G. PHAVer: Algorithmic verification of hybrid systems past HyTech. In: Morari M, Thiele L, eds. Proc. of the Int’l Conf. on Hybrid Systems: Computation and Control 2005. LNCS 2289, Springer-Verlag, 2005. 258?273. [doi: 10.1007/s10009-007-0062-x]
    [7] Henzinger T, Majumdar R. Symbolic model checking for rectangular hybrid systems. In: Graf S, Schwartzbach M, eds. Proc. of the 6th Workshop on Tools and Algorithms for the Construction and Analysis of Systems. LNCS 1785, Springer-Verlag, 2000. 142?156. [doi: 10.1007/3-540-46419-0_11]
    [8] Zhou C, Zhang J, Yang L, Li X. Linear duration invariants. In: Langmaack H, Roever W, Vytopil J, eds. Proc. of the Formal Techniques in Real-Time and Fault-Tolerant Systems. LNCS 863, Berlin: Springer-Verlag, 1994. 86?109.
    [9] Li X, Dang V, Zheng T. Checking hybrid automata for linear duration invariants. In: Shyamasundar R, Ueda K, eds. Advances in Computing Science (ASIAN’97). LNCS 1345, Springer-Verlag, 1997. 166?180. [doi: 10.1007/3-540-63875-X_51]
    [10] Li X, Zhao J, Pei Y, Li Y, Zheng T, Zheng G. Positive loop-closed automata: A decidable class of hybrid systems. Journal of Logic and Algebraic Programming, 2002,52-53:79?108. [doi: 10.1016/S1567-8326(02)00023-1]
    [11] Bryant R. Graph-Based algorithms for boolean function manipulation. IEEE Trans. on Computers, 1986,35(8):677?691. [doi: 10.1109/TC.1986.1676819]
    [12] Zhang L, Malik S. The quest for efficient Boolean satisfiability solvers. In: Brinksma D, Larsen G, eds. Proc. of the Int’l Conf. on Computer Aided Verification 2002. LNCS 2404, Springer-Verlag, 2002. 17?36. [doi: 10.1007/3-540-45620-1_26]
    [13] Biere A, Cimatti A, Clarke EM, Strichman O, Zhu Y. Bounded model checking. Advance in Computers, 2003,58:118?149.
    [14] Franzle M, Herde C, Ratschan S, Schubert T, Teige T. Efficient solving of large non-linear arithmetic constraint systems with complex Boolean structure. Journal on Satisfiability, Boolean Modeling and Computation, 2007,1:209?236.
    [15] Audemard G, Bozzano M, Cimatti A, Sebastiani R. Verifying industrial hybrid systems with MathSAT. Electronic Notes in Theoretical Computer Science, 2005,119(2):17?32. [doi: 10.1016/j.entcs.2004.12.022]
    [16] Audemerd G, Cimatti A, Sebastiani R. Bounded model checking for timed systems. In: Peled D, Vardi M, eds. Proc. of the Int’l Conf. on Formal Techniques Networked and Distributed Systems. LNCS 2529, Springer-Verlag, 2002. 243?259.
    [17] Li X, Sumit J, Bu L. Towards an efficient path-oriented tool for bounded reachability analysis of linear hybrid systems using linear programming. Electronic Notes in Theoretical Computer Science, 2007,174:57?70. [doi: 10.1016/j.entcs.2006.12.023]
    [18] Bu L, Li Y, Wang L, Li X. BACH: Bounded reachability checker for linear hybrid automata. In: Cimatti A, Jones R, eds. Proc. of the 8th Int’l Conf. on Formal Methods in Computer Aided Design. IEEE Computer Society Press, 2008. 65?68. [doi: 10.1109/FMCAD.2008.ECP.13]
    [19] Bu L, Li X. Path-Oriented bounded reachability analysis of composed linear hybrid systems. Int’l Journal on Software Tools for Technology Transfer. [doi: 10.1007/s10009-010-0163-9]
    [20] Wang F. Symbolic parametric safety analysis of linear hybrid systems with bdd-like data structures. IEEE Trans. on Software Engineering, 2005,31(1):38?51. [doi: 10.1109/TSE.2005.13]
    [21] Moura L, Bj?rner N. Z3: An efficient SMT solver. In: Ramakrishnan C, Rehof J, eds. Proc. of the Conf. on Tools and Algorithms for the Construction and Analysis of Systems 2008. LNCS 4963, Springer-Verlag, 2008. 337?340.
    [22] Bruttomesso R, Cimatti A, Franzen A, Griggio A, Sebastiani R. The MathSAT 4 SMT solver. In: Gupta A, Malik S, eds. Proc. of the Int’l Conf. on Computer Aided Verification 2008. LNCS 5123, Springer-Verlag, 2008. 299?303. [doi: 10.1007/978-3-540-70545-1_28]
    [23] Dutertre B, de Moura L. The Yices SMT solver. 2006. http://yices.csl.sri.com/tool-paper.pdf
    [24] Barrett C, Tinelli C. CVC3. In: Damm W, Hermanns H, eds. Proc. of the Int’l Conf. on Computer Aided Verification 2007. LNCS 4590, Springer-Verlag, 2007. 298?302.
    [25] Bofill M, Nieuwenhuis R, Oliveras A, Rodriguez-Carbonell E, Rubio A. The Barcelogic SMT solver. In: Gupta A, Malik S, eds. Proc. of the Int’l Conf. on Computer Aided Verification 2008. LNCS 5123, Springer-Verlag, 2008. 294?298. [doi: 10.1007/978-3-540-70545-1_27]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

卜磊,李游,王林章,李宣东. BACH:线性混成系统有界可达性模型检验工具.软件学报,2011,22(4):640-658

复制
分享
文章指标
  • 点击次数:5313
  • 下载次数: 7099
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2009-05-12
  • 最后修改日期:2009-08-12
文章二维码
您是第19920376位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号