磁共振颅脑图像的脑组织自动获取方法
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60736008 (国家自然科学基金)


Automatic Brain Tissue Extraction Approach of Magnetic Resonance Head Images
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    提出了一种针对MRI磁共振图像通过两次分割实现颅脑图像脑组织自动获取的方法.通过基于Catt扩散模型的各项异性滤波,实现了在保持图像细节的同时有效地消除图像的噪声.然后通过改进的基于相似性区域合并的分水岭算法解决了过分割问题,实现了脑组织区域的初次分割.由于颅脑图像不同组织之间边缘模糊且自身容易受到噪声的影响,导致区域合并过程中可能会误将非脑组织作为脑组织合并,因此,采用水平集方法将初次分割获得的脑组织轮廓作为初始轮廓曲线,实现了脑组织的自动分割.实验结果验证了算法的可行性和实用性.

    Abstract:

    This paper presents an effective automatic method of brain extraction through twice segmentations respectively. The noise of the image is eliminated through anisotropic diffusion filtering based on Catt model while the details of the image are kept. The over-segmentation problem of the watershed algorithm is solved based on the merging of gray-scale similarity regions and the brain tissue is initially segmented. The edges of different organizations of every brain image are fuzzy and the MRI data is vulnerable to be affected by noise, therefore the non-brain region may be mistaken for brain region in the process of merging. In order to solve these problems, the Level Set method is adopted. The outline of the watershed is taken as the initial curves of level set to realize the automatic segmentation of brain tissue. The feasibility and practicality of this algorithm is proved by the results in the experiments.

    参考文献
    [1] Smith SM. Fast robust automated brain extraction. Human Brain Mapping, 2002,17(3):143?155.
    [2] Battaglini M, Smith SM, Brogi S, Stefano ND. Enhanced brain extraction improves the accuracy of brain atrophy estimation. Neuroimage, 2008,40(2):583?589.
    [3] Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahy RM. Magnetic resonance image tissue classification using a partial volume model. NeuroImage, 2001,13(5):856?876.
    [4] Talairach J. Co-Planar Stereotaxic Atlas of the Human Brain. New York: Thieme, 1988.
    [5] Song LW, Song CY, Zhuang TG. Watershed-Based brain magnetic resonance image automated segmentation. Journal of Shanghai Jiaotong University, 2003,37(11):1754?1756 (in Chinese with English abstract).
    [6] Chen ZB, Qiu TS, Su R. FCM and level set based segmentation method for brain MR images. Acta Electronica Sinica, 2008,36(9): 1733?1736 (in Chinese with English abstract).
    [7] Kass M, Witkin A, Terzopolos D. Snakes: Active contour models. Int’l Journal of Computer Vision, 1988,1(4):321?331.
    [8] Perona P, Malik J. Scale-Space and edge detection using anisotropic diffusion. IEEE Trans. on Pattern Analysis and Machines Intelligence, 1990,12(7):629?639.
    [9] Catté F, Lions PL, Morel JM, Coll T. Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis, 1992,29(1):182?193.
    [10] Vincent L, Soille P. Watersheds in digital space: An efficient algorithm based on immersion simulation. IEEE Trans. on Patter Analysis and Machine Intelligence, 1991,13(6):583?598.
    [11] Osher S, Sethian JA. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 1998,79(1):12?49.
    [12] Malladi R, Sethian J, Vemuri B. Shape modeling with front propagation: A level set approach. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(2):158?174. 附中文参考文献:
    [5] 宋利伟,宋朝昀,庄天戈.基于分水岭算法的磁共振脑图像自动分割.上海交通大学学报,2003,37(11):1754?1756.
    [6] 陈志彬,邱天爽,Su R.一种基于FCM和Level Set的MRI医学图像分割方法.电子学报,2008,36(9):1733?1736.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

税午阳,周明全,耿国华.磁共振颅脑图像的脑组织自动获取方法.软件学报,2009,20(5):1139-1145

复制
分享
文章指标
  • 点击次数:8039
  • 下载次数: 10879
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2008-09-25
  • 最后修改日期:2008-12-15
文章二维码
您是第19728073位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号