基于非截断小波有限元的BLT正向问题研究
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60872137, 30873462, 90209008, 30870685, 30672690, 30600151, 60532050, 60621001 (国家自然科学基金); the National Basic Research Program of China under Grant No.2006CB705700 (国家重点基础研究发展计划(973)); the Program for Cheung Kong Scholars and Innovative Research Team in University of China under Grant No.IRT0645 (长江学者和创新团队发展计划); the Program for Chair Professors of “Cheung Kong Scholars Program” of China (“长江学者奖励计划”特聘教授); the Joint Research Fund for Overseas Chinese Young Scholars under Grant No.30528027 (海外青年学者合作研究基金); the CAS Hundred Talents Program (中国科学院百人计划); the CAS Scientific Research Equipment Develop Program under Grant Nos.YZ0642, YZ200766 (中国科学院重大科研装备研制项目); the Beijing Municipal Natural Science Foundation of China under Grant No.4071003 (北京市自然科学基金)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对自发荧光断层成像,提出了一种非截断小波有限元算法.该算法采用单元间非截断组合小波基来逼近未知函数,从理论上解决了二维和三维下复杂形状体的剖分,并成功地应用于自发荧光断层成像正向问题中圆柱和圆球仿体的研究.理论分析和数值仿真结果表明,与传统有限元的数值解相比,该算法在获得同样有效解的情况下减少了单元剖分数,降低了计算的复杂度.

    Abstract:

    In this paper, an algorithm named non-truncated wavelet finite element for bioluminescence tomography (BLT) is proposed. Using linear combination of non-truncated wavelet functions across the elements to approximate the unknown function, this algorithm is used in BLT forward problem in phantoms of cylinder and sphere successfully. Theoretical analysis and numerical simulations show that the computation accuracy by this algorithm is almost as good as that of finite element method (FEM), while the number of elements and computational complexity reduce greatly compared with FEM.

    参考文献
    [1] Li H. Studies on forward and inverse problems in vivo bioluminescent tomography imaging [Ph.D. Thesis]. Beijing: Institute of Automation, the Chinese Academy of Sciences, 2005 (in Chinese with English abstract).
    [2] Hengerer A, Wunder A, Wagenaar DJ, Vija AH, Shah M, Grimm J. From genomics to clinical molecular imaging. Proc. of the IEEE, 2005,93(4):819?828.
    [3] Cong WX, Wang G, Kumar D, Liu Y, Jiang M, Wang LH, Hoffman EA, McLennan G, McCray PB, Zabner J, Cong A. Practical reconstruction method for bioluminescence tomography. Optics Express, 2005,13(8):6756?6771.
    [4] Lü YJ. Research of inverse problems in bioluminescence tomography (BLT) [Ph.D. Thesis]. Beijing: Institute of Automation, the Chinese Academy of Sciences, 2007 (in Chinese with English abstract).
    [5] Wang G, Li Y, Jiang M. Uniqueness theorems in bioluminescence tomography. Medical Physics, 2004,31(8):2289?2299.
    [6] Lü YJ, Tian J, Cong WX, Wang G, Luo J, Yang W, Li H. A multilevel adaptive finite element algorithm for bioluminescence tomography. Optics Express, 2006,14(8):8211?8223.
    [7] Li KT, Huang AX, Huang QH. Finite Element Method and Its Applications. Xi’an: Xi’an Jiaotong University Press, 1984 (in Chinese).
    [8] Ma JX. Theory of daubechies wavelet finite element method and its engineering application [Ph.D. Thesis]. Xi’an: Xi’an Jiaotong University, 2003 (in Chinese with English abstract).
    [9] He ZJ, Chen XF, Li B, Xiang JW. The Theory of Wavelet Finite Element and Its Applications in Engineering. Beijing: Science Press, 2006 (in Chinese).
    [10] He ZJ, Chen XF. Advances in theory study and engineering application of wavelet finite element. Chinese Journal of Mechanical Engineering, 2005,41(3):2?11 (in Chinese with English abstract).
    [11] Xiang JW, Chen XF, He ZJ, Dong HB. The construction of 1D wavelet finite elements for structural analysis. Computational Mechanics, 2007,40(2):325?339.
    [12] Jin JM, Xue PX, Xu YX, Zhu YL. Compactly supported non-tensor product form two dimension wavelet finite element. Applied Mathematics and Mechanics, 2006,27(12):1464?1476 (in Chinese with English abstract).
    [13] Chui CK. An Introduction to Wavelets. New York: Academic Press, 1992.
    [14] Wang G, Cong WX, Durairaj K, Qian X, Shen HO, Sinn P, Hoffman E, McLennan G, Henry M. In vivo mouse studies with bioluminescence tomography. Optics Express, 2006,14(17):7801?7809.
    [15] Cherry SR. In vivo molecular and genomic imaging: New challenges for imaging physics. Physics in Medicine and Biology, 2004, 49(3):R13?R48.
    [16] Li H, Tian J, Wang G. Photon propagation model of in vivo bioluminescent imaging based on Monte Carlo. Journal of Software, 2004,15(11):1709?1719 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/15/1709.htm
    [17] Wang LHV, Wu HI. Biomedical Optics Principles and Imaging. New York: John Wiley & Sons, Inc., 2007.
    [18] Xu KX, Gao F, Zhao HJ. Biomedical Photonics. Beijing: Science Press, 2007 (in Chinese).
    [19] Lu JF, Guan Z. The Numerical Solution of Partial Differential Equations. 2nd ed., Beijing: Tsinghua University Press, 2004 (in Chinese). 附中文参考文献: [1] 李慧.在体生物光学成像前向及逆向问题研究[博士学位论文].北京:中国科学院自动化研究所,2005.
    [4] 吕玉杰.自发荧光断层成像逆向问题研究[博士学位论文].北京:中国科学院自动化研究所,2007.
    [7] 李开泰,黄艾香,黄庆怀.有限元方法及其应用.西安:西安交通大学出版社,1984.
    [8] 马军星.Daubechies小波有限元理论及工程应用研究[博士学位论文].西安:西安交通大学,2003.
    [9] 何正嘉,陈雪峰,李兵,向家伟.小波有限元理论及其工程应用.北京:科学出版社,2006.
    [10] 何正嘉,陈雪峰.小波有限元理论研究及其工程进展.机械工程学报,2005,41(3):2?11.
    [12] 金坚明,薛鹏翔,徐应祥,朱亚莉.具有紧支撑的非张量积形式二维小波有限元.应用数学和力学,2006,27(12):1464?1476.
    [16] 李慧,田捷,王革.基于Monte Carlo在体生物光学成像的光子传输模型.软件学报,2004,15(11):1709?1719. http://www.jos.org.cn/ 1000-9825/15/1709.htm
    [18] 徐可欣,高峰,赵会娟.生物医学光子学.北京:科学出版社,2007.
    [19] 陆金甫,关治.偏微分方程的数值解法.第2版,北京:清华大学出版社,2004.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

靳露冬,吴艳,王卫卫,任努努,黄鹤羽,陈雪利,韩润强.基于非截断小波有限元的BLT正向问题研究.软件学报,2009,20(5):1194-1206

复制
分享
文章指标
  • 点击次数:7630
  • 下载次数: 8524
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2008-04-10
  • 最后修改日期:2009-01-14
文章二维码
您是第20444826位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号