一种心脏核磁共振图像左室壁内、外膜分割方法
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60602050, 60805004, 60675021 (国家自然科学基金); the National High-Tech Research and Development Plan of China under Grant No.2006AA01Z120 (国家高技术研究发展计划(863))


Method for Segmentation of the Endocardium and Epicardium of the Left Ventricle in Cardiac Magnetic Resonance Images
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了充分利用心脏核磁共振图像(magnetic resonance image,简称MRI)中关于左心室的解剖和功能信息,必须先分割左室壁内、外膜.提出一种基于Snake模型的左室壁内、外膜分割方法.首先提出了Snake模型的卷积虚拟静电场外力模型CONVEF(convolutional virtual electric field),该外力场捕捉范围大、抗噪能力强、在C形凹陷区域等问题上性能突出,而且基于卷积运算,采用快速Fourier变换可以实时计算.就左室壁内膜的分割而言,考虑到左室壁的形状近似为圆形,引入基于圆形约束的能量项.对于左室壁外膜的分割,充分挖掘了左室壁内、外膜形状上的相似性和位置上的相关性,构造了形状相似性内能和一个新的边缘图,该边缘图用来计算新的外力场.基于所有这些策略并采用内膜的分割结果初始化,可以自动、准确地分割外膜.通过对一套活体心脏MR(magnetic resonance)图像进行分割并和手工分割结果和GGVF(generalized gradient vector flow) Snake模型的分割结果进行比较,结果表明该方法是有效的.

    Abstract:

    In order to make a thorough use of the anatomical and functional information derived from cardiac magnetic resonance images, the epicardium and endocardium of the left ventricle should be extracted in advance. This paper presents a method for segmentation of the endocardium and epicardium of the left ventricle in cardiac magnetic resonance images using Snake models. It first proposes an external force for active contours, which is called convolutional virtual electric field (CONVEF). This CONVEF external force possesses the advantages of enlarged capture range, noise resistance and C-shape concavity convergence and can be implemented in real time by using fast Fourier transform since it is based on convolution. Considering that the left ventricle is roughly a circle, a shape constraint based on circle is adopted for segmentation of the endocardium. As to locating the epicardium, an internal energy based on shape similarity is proposed, and an edge map is coined to calculate the new external force by exploiting the resemblance between the endocardium and epicardium in shape and position. With these strategies, taking the final contour for endocardium as initialization, the Snake contour is reactivated to locate the epicardium automatically and accurately. This paper demonstrates the proposed approach on an in vivo dataset and compare the segmented contours with that of the GGVF (generalized gradient vector flow) Snake and manual collections. The results show its effectiveness.

    参考文献
    [1] Emilsson K, Kahari A, Bodin L, Thunberg P. Outer contour and radial changes of the cardiac left ventricle—A magnetic resonance imaging study. Clinical Research in Cardiology, 2007,96(5):272?278.
    [2] Caiani EG, Toledo E, MacEneaney P, Bardo D, Cerutti S, Lang RM, Mor-Avi V. Automated interpretation of regional left ventricular wall motion from cardiac magnetic resonance images. Journal of Cardiovascular Magnetic Resonance, 2006,8(3): 427?433.
    [3] Kaus MR, von Berg J, Weese J, Niessen W, Pekar V. Automated segmentation of the left ventricle in cardiac MRI. Medical Image Analysis, 2004,8(1):245?254.
    [4] Beichel R, Bischof H, Leberl F, Sonka M. Robust active appearance models and their application to medical image analysis. IEEE Trans. on MI, 2005,24(9):1151?1169.
    [5] Hong H, Grosskopf S, Kim MH. Ventricular shape visualization using selective volume rendering of cardiac datasets. Computers in Biology and Medicine, 2001,31(6):481?498.
    [6] Jolly MP. Automatic segmentation of the left ventricle in cardiac MR and CT images. Int’l Journal of Computer Vision, 2006,70(2): 151?163.
    [7] Makowski P, S?rensen TS, Therkildsen SV, Materka A, St?dkilde-J?rgensen H, Pedersen EM. Two-Phase active contour method for semiautomatic segmentation of the heart and blood vessels from MRI images for 3D visualization. Computerized Medical Imaging and Graphics, 2002,26(1):9?17.
    [8] Nguyen D, Masterson K, Vallée JP. Comparative evaluation of active contour model extensions for automated cardiac MR image segmentation by regional error assessment. Magnetic Resonance Materials in Physics, Biology and Medicine, 2007,20(2):69?82.
    [9] Hautvast G, Lobregt S, Breeuwer M, Gerritsen F. Automatic contour propagation in cine cardiac magnetic resonance images. IEEE Trans. Medical Imaging, 2006,25(11):1472?1482.
    [10] Paragios N. A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Trans. on Medical Imaging, 2003,22(6):773?776.
    [11] Zhou SJ, Liang B, Chen WF. A new approach to the motion estimation of cardiac image sequences: Active contours motion tracking based on the generalized fuzzy gradient vector flow. Chinese Journal of Computers, 2003,26(11):1470?1478 (in Chinese with English abstract).
    [12] Zhou ZM, Wang HY, You JJ, Heng PA, Xia DS. Left ventricle MRI segmentation based on an improved fast snake model. Journal of Computer Research and Development, 2004,41(1):136?141 (in Chinese with English abstract).
    [13] Wang YQ, Jia YD. A novel approach for segmentation of cardiac magnetic resonance images. Chinese Journal of Computers, 2007, 30(1):129?136 (in Chinese with English abstract).
    [14] Pluempitiwiriyawej C, Moura JMF, Wu LYJ, Ho C. STACS: A new active contour scheme for cardiac MR image segmentation. IEEE Trans. on Medical Imaging, 2005,24(5):593?603.
    [15] Xu CY, Prince JL. Snakes, shapes and gradient vector flow. IEEE Trans. on Image Processing, 1998,7(3):359?369.
    [16] Park, HK, Chung MJ. External force of snake: Virtual electric field. IEE Electronics Letters, 2002,38(24):1500?1502.
    [17] Wang YQ. Investigation on gradient vector flow snake model with applications to medical image segmentation. Postdoc Research Report, Beijing: Beijing Institute of Technology, 2006 (in Chinese with English abstract). 附中文参考文献:
    [11] 周寿军,梁斌,陈武凡.心脏序列图像运动估计新方法:基于广义模糊梯度矢量流的形变曲线运动估计与跟踪.计算机学报,2003, 26(11):1470?1478.
    [12] 周则明,王洪元,尤建洁,王平安,夏德深.基于改进快速活动轮廓模型的左心室核磁共振图像分割.计算机研究与发展,2004,41(1): 136?141.
    [13] 王元全,贾云得.一种新的心脏核磁共振图像分割方法.计算机学报,2007,30(1):129?136.
    [17] 王元全.梯度矢量流主动轮廓模型的若干理论问题及其在医学图像分割中的应用研究[博士后研究报告].北京:北京理工大学, 2006.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王元全,贾云得.一种心脏核磁共振图像左室壁内、外膜分割方法.软件学报,2009,20(5):1176-1184

复制
分享
文章指标
  • 点击次数:7760
  • 下载次数: 9539
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2008-08-29
  • 最后修改日期:2008-12-15
文章二维码
您是第19754336位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号