阿尔茨海默氏症研究中的磁共振成像数据分析
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60628101 (国家自然科学基金); the Beijing Municipal Natural Science Foundation of China under Grant No.4061004 (北京市自然科学基金)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [76]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    首先综述了当前结构磁共振成像、功能磁共振成像和扩散张量磁共振成像3种技术在阿尔茨海默氏症研究中的现状;其次介绍和分析了上述3种磁共振成像数据的主要处理方法;最后介绍了基于阿尔茨海默氏症的神经影像数据库及其诊断平台的建设状况.另外,也提到了此课题在该领域的一些研究进展.

    Abstract:

    Firstly, current Alzheimer’s disease (AD) studies using structural magnetic resonance imaging (MRI), functional MRI and diffusion tensor imaging (DTI) techniques are reviewed. Then the primary processing approaches of the three sorts of MRI data are introduced and analyzed. Finally, the neuroimaging database based on AD and the construction of corresponding diagnosis platform are described. Moreover, some research advances of the research group in this field are also mentioned.

    参考文献
    [1] Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature, 2004,430(7000):631?639.
    [2] Dubois B, Feldman HH, Jacova C, DeKosky ST, Barberger-Gateau P, Jeffrey Cummings, Delacourte A, Galasko D, Gauthier S, Jicha G, Meguro K, O’Brien J, Pasquier F, Robert P, Rossor M, Salloway S, Stern Y, Visser PJ, Scheltens P. Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurology, 2007,6(8):734?746.
    [3] Wierenga CE, Bondi MW. Use of functional magnetic resonance imaging in the early identification of Alzheimer’s disease. Neuropsychology Review, 2007,17(2):127?143.
    [4] Karas GB, Burton EJ, Rombouts SARB, van Schijndel RA, O’Brien JT, Scheltens P, McKeith IG, Williams D, Ballard C, Barkhof F. A comprehensive study of gray matter loss in patients with Alzheimer’s disease using optimized voxel-based morphometry. NeuroImage, 2003,18(4):895?907.
    [5] Karas GB, Scheltens P, Rombouts SARB, Visser PJ, van Schijndel RA, Fox NC, Barkhof F. Global and local gray matter loss in mild cognitive impairment and Alzheimer’s disease. NeuroImage, 2004,23(2):708?716.
    [6] Chételat G, Landeau B, Eustache F, Mézenge F, Viader F, de la Sayette V, Desgranges B, Barond JC. Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: A longitudinal MRI study. NeuroImage, 2005, 7(4):934?946.
    [7] Thompson PM, Mega MS, Woods RP, Zoumalan CI, Lindshield CJ, Blanton RE, Moussail J, Holmes CJ, Cummings JL, Toga AW. Cortical change in Alzheimer’s disease detected with a disease-specific population-based brain atlas. Cerebral Cortex, 2001,11(1): 1?6.
    [8] He Y, Chen ZJ, Evans AC. Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. Journal of Neuroscience, 2008,28(18):4756?4766.
    [9] Chen KW, Reiman EM, Alexander GE, Bandy D, Renaut R, Crum WR, Fox NC, Rossorh MN. An automated algorithm for the computation of brain volume change from sequential MRI’s using an iterative principal component analysis and its evaluation for the assessment of whole brain atrophy rates in patients with probable Alzheimer’s disease. NeuroImage, 2004,22(1):134?143.
    [10] Scahill RI, Schott JM, Stevens JM, Rossor MN, Fox NC. Mapping the evolution of regional atrophy in Alzheimer’s disease: Unbiased analysis of fluid-registered serial MRI. Proc. of the National Academy of Sciences of the United States of America, 2002, 99(7):4703?4707.
    [11] Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: A network analysis of the default modehypothesis. Proc. of the National Academy of Sciences of the United States of America, 2003,100(1):253?258.
    [12] Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M. Electrophysiological signatures of resting state networks in the human brain. Proc. of the National Academy of Sciences of the United States of America, 2007,104(32):13170?13175.
    [13] Liu Y, Wang K, Yu C, He Y, Zhou Y, Liang M, Wang L, Jiang TZ. Regional homogeneity, functional connectivity and imaging markers of Alzheimer’s disease: A review of resting-state fMRI studies. Neuropsychologia, 2008,46(6):1648?1656.
    [14] Greicius MD, Srivastava G, Reiss AL, Menon V. Default-Mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI. Proc. of the National Academy of Sciences of the United States of America, 2004,101(13): 4637?4642.
    [15] Sorg C, Riedl V, Muhlau M, Calhoun VD, Eichele T, Laer L, Drzezga A, Forstl H, Kurz A, Zimmer C, Wohlschlager AM. Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc. of the National Academy of Sciences of the United States of America, 2007,104(47):18760?18765.
    [16] Allen G, Barnard H, McColl R, Hester AL, Fields JA, Weiner MF, Ringe WK, Lipton AM, Brooker M, McDonald E, Rubin CD, Cullum CM. Reduced hippocampal functional connectivity in Alzheimer disease. Archives of Neurology, 2007,64(10):1482?1487.
    [17] Wang L, Zang Y, He Y, Liang M, Zhang XQ, Tian LX, Wu T, Jiang TZ, Li KC. Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: Evidence from resting state fMRI. NeuroImage, 2006,31(2):496?504.
    [18] Li SJ, Li Z, Wu G, Zhang MJ, Franczak M, Antuono PG. Alzheimer disease: Evaluation of a functional MR imaging index as a marker. Radiology, 2002,225(1):253?259.
    [19] He Y, Wang L, Zang Y, Tian LX, Zhang XQ, Li KC, Jiang TZ. Regional coherence changes in the early stages of Alzheimer’s disease: A combined structural and resting-state functional MRI study. NeuroImage, 2007,35(2):488?500.
    [20] Remy F, Mirrashed F, Campbell B, Richter W. Verbal episodic memory impairment in Alzheimer’s disease: A combined structural and functional MRI study. NeuroImage, 2005,25(1):253?266.
    [21] Machulda MM, Ward HA, Borowski B, Gunter JL, Cha RH, O’Brien PC, Petersen RC, Boeve BF, Knopman D, Tang-Wai DF, Ivnik RJ, Smith GE, Tangalos EG, Jack CR. Comparison of memory fMRI response among normal, MCI, and Alzheimer’s patients. Neurology, 2003,61(4):500?506.
    [22] Sperling RA, Bates JF, Chua EF, Cocchiarella AJ, Rentz DM, Rosen BR, Schacter DL, Albert MS. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 2003,74(1):44?50.
    [23] Backman L, Andersson JL, Nyberg L, Winblad B, Nordberg A, Almkvist O. Brain regions associated with episodic retrieval in normal aging and Alzheimer’s disease. Neurology, 1999,52(9):1861?1870.
    [24] Gron G, Bittner D, Schmitz B, Wunderlich AP, Riepe MW. Subjective memory complaints: Objective neural markers in patients with Alzheimer’s disease and major depressive disorder. Annals of Neurology, 2002,51:491?498.
    [25] Buckner RL. Memory and executive function in aging and AD: Multiple factors that cause decline and reserve factors that compensate. Neuron, 2004,44(1):195?208.
    [26] Saykin AJ, Flashman LA, Frutiger SA, Johnson SC, Mamourian AC, Moritz CH, O’Jile JR, Riordan HJ, Santulli RB, Smith CA, Weaver JB. Neuroanatomic substrates of semantic memory impairment in Alzheimer’s disease: Patterns of functional MRI activation. Journal of the Int’l Neuropsychological Society, 1999,5(5):377?392.
    [27] Becker JT, Mintun MA, Aleva K, Wiseman MB, Nichols T, DeKosky ST. Compensatory reallocation of brain resources supporting verbal episodic memory in Alzheimer’s disease. Neurology, 1996,46(3):692?700.
    [28] Woodard JL, Grafton ST, Votaw JR, Green RC, Dobraski ME, Hoffman JM. Compensatory recruitment of neural resources during overt rehearsal of word lists in Alzheimer’s disease. Neuropsychology, 1998,12(4):491?504.
    [29] Grady CL, McIntosh AR, Beig S, Keightley ML, Burian H, Black SE. Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. Journal of Neuroscience, 2003,23(3):986?993.
    [30] Gould RL, Arroyo B, Brown RG, Owen AM, Bullmore ET, Howard RJ. Brain mechanisms of successful compensation during learning in Alzheimer disease. Neurology, 2006,67(6):1011?1017.
    [31] Pariente J, Cole S, Henson R, Clare L, Kennedy A, Rossor M, Cipoloti L, Puel M, Demonet JF, Chollet F, Frackowiak RSJ. Alzheimer’s patients engage an alternative network during a memory task. Annals of Neurology, 2005,58(6):870?879.
    [32] Yetkin FZ, Rosenberg RN, Weiner MF, Purdy PD, Cullum CM. FMRI of working memory in patients with mild cognitive impairment and probable Alzheimer’s disease. European Radiology, 2006,16(1):193?206.
    [33] Hao J, Li K, Zhang D, Zhang D, Wang W, Yang YH, Yan B, Shan BC, Zhou XL. Visual attention deficits in Alzheimer’s disease: An fMRI study. Neuroscience Letters, 2005,385(1):18?23.
    [34] Prvulovic D, Hubl D, Sack AT, Melillo L, Maurer K, Frolich L, Lanfermann H, Zanella FE, Goebel R, Linden DEJ, Dierks T.Functional imaging of visuospatial processing in Alzheimer’s disease. NeuroImage, 2002,17(3):1403?1414.
    [35] Han X, Holtzman M, McKeel DW, Kelley J, Morris JC. Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: Potential role in disease pathogenesis. Journal of Neurochemistry, 2002,82(4):809?818.
    [36] Choi SJ, Lim KO, Monteiro I, Reisberg B. Diffusion tensor imaging of frontal white matter microstructure in early Alzheimer’s disease. Journal of Geriatric Psychiatry and Neurology, 2005,18(1):12?19.
    [37] Rose SE, Chen F, Chalk JB, Zelaya FO, Strugnell WE, Benson M, Semple J, Doddrell DM. Loss of connectivity in Alzheimer’s disease: An evaluation of white matter tract integrity with colour coded MR diffusion tensor imaging. Journal of Neurology, Neurosurgery, and Psychiatry, 2000,69(4):528?530.
    [38] Yoshiura T, Mihara F, Ogomori K, Tanaka A, Kaneko K, Masuda K. Diffusion tensor in posterior cingulate gyrus: Correlation with cognitive decline in Alzheimer’s disease. Neuroreport, 2002,13(17):2299?2302.
    [39] Horsfield MA, Jones DK. Applications of diffusion-weighted and diffusion tensor MRI to white matter disease. NMR in Biomedicine, 2002,15(7-8):570?577.
    [40] Medina D, deToledo-Morrell L, Urresta F, Gabrieli JDE, Moseley M, Fleischman D, Bennett DA, Leurgans S, Turner DA, Stebbins GT. White matter changes in mild cognitive impairment and AD: A diffusion tensor imaging study. Neruobiology of Aging, 2006,27(5):663?672.
    [41] Taoka T, Iwasaki S, Sakamoto M, Nakagawa H, Fukusumi A, Myochin K, Hirohashi S, Hoshida T, Kichikawa K. Diffusion anisotropy and diffusivity of white matter tracts within the temporal stem in Alzheimer disease: Evaluation of the “tract of interest” by diffusion tensor tractography. American Journal of Neuroradiology, 2006,27(5):1040?1045.
    [42] Rajapakse JC, Giedd JN, Rumsey JM, Vaituzis AC, Hamburger SD, Rapoport JL. Regional MRI measurements of the corpus callosum: A methodological and developmental study. Brain & Development, 1996,18(5):379?388.
    [43] Ashburner J, Friston KJ. Voxel-Based morphometry—The methods. NeuroImage, 2000,11(6):805?821.
    [44] Good CD, Ashburner J, Friston KJ, Henson RNA, Friston KJ, Frackowiak RSJ. A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 2001,14(1):21?36.
    [45] Lerch JP, Pruessner JC, Zijdenbos A, Hampel H, Teipel SJ, Evans AC. Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cerebral Cortex, 2005,15(7):995?1001.
    [46] MacDonald D, Kabani N, David A, Evans AC. Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. NeuroImage, 2000,12(3):340?356.
    [47] Zijdenbos AP, Forghani R, Evans AC. Automatic “pipeline” analysis of 3-D MRI data for clinical trials: Application to multiple sclerosis. IEEE Trans. on Medical Imaging, 2002,21(10):1280?1291.
    [48] Lerch JP, Worsley K, Shaw WP, Greenstein DK, Lenroot RK, Giedd J, Evansa AC. Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. NeuroImage, 2006,31(3):993?1003.
    [49] He Y, Chen ZJ, Evans AC. Small-World anatomical networks in the human brain revealed by cortical thickness from MRI. Cerebral Cortex, 2007,17(10):2407?2419.
    [50] Xiong JH, Lawrence MP. Interregional connectivity to primary motor cortex revealed using MRI resting state images. Human Brain Mapping, 1999,8(2-3):151?156.
    [51] Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC. Detection of functional connectivity using temporal correlations in MR images. Human Brain Mapping, 2002,15(4):247?262.
    [52] Friston KJ, Frith CD, Liddle PF. Functional connectivity: the principal component analysis of large (PET) data sets. Journal of Cerebral Blood Flow and Metabolism, 1993,13(1):5?14.
    [53] Hyvarinen A, Oja E. Independent component analysis: Algorithms and applications. Neural Network, 2000,13(4-5):411?430.
    [54] Hyvarinen A, Karhunen J, Oja E, Independent Component Analysis. New York: A Wiley-Interscience Publication, 2001.
    [55] Biswal BB, Ulmer JL. Blind source separation of multiple signal sources of fMRI data sets using independent component analysis. Journal of Computer Assisted Tomography, 1999,23(2):265?271.
    [56] McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, Sejnowski TJ. Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping, 1998,6(3):160?188.
    [57] van de Ven VG, Formisano E, Prvulovic D. Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Human Brain Mapping, 2004,22(3):165?178.
    [58] Xu L. Independent component analysis and extensions with noise and time: A Bayesian Ying-Yang learning perspective. Neural Information Processing, 2003,1(1):1?52.
    [59] Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 2001,14(3):140?151.
    [60] Zhong M, Tang H, Tang YY. Expectation—Maximization approaches to independent component analysis. Neurocomputing, 2004, 61:503?512.
    [61] Wu X, Yao L, Long ZY, Chen KW. A variant of logistic transfer function in Infomax and a post-processing procedure for independent component analysis applied to fMRI data. Magnetic Resonance Imaging, 2007,25(5):703?711.
    [62] McIntosh AR, Gonzalez-Lima F. Structural equation modeling and its application to network analysis in functional brain imaging. Human Brain Mapping, 1994,2(1-2):2?22.
    [63] Bullmore E, Horwitz B, Honey G, Brammer M, Williams S, Sharma T. How good is good enough in path analysis of fMRI data? NeuroImage, 2000,11(4):289?301.
    [64] Honey GD, Fu CHY, Kim J, Brammer MJ, Croudace TJ, Suckling J, Pich EM, Williams SCR, Bullmore ET. Effects of verbal working memory load on corticocortical connectivity modeled by path analysis of functional magnetic resonance imaging data. NeuroImage, 2002,17(2):573?582.
    [65] Friston KJ, Harrison L, Penny W. Dynamic causal modeling. NeuroImage, 2003,19(4):1273?1302.
    [66] Zang YF, Jiang TZ, Lu YL, He Y, Tiana LX. Regional homogeneity approach to fMRI data analysis. NeuroImage, 2004,22(1): 394?400.
    [67] Marrelec G, Krainik A, Duffau H, Pelegrini-Issac M, Lehericy S, Doyon J, Benali H. Partial correlation for functional brain interactivity investigation in functional MRI. NeuroImage, 2006,32(1):228?237
    [68] Pajevic S, Aldroubi A, Basser PJ. A continuous tensor field approximation of discrete DT-MRI data for extracting microstructural and architectural features of tissue. Journal of Magnetic Resonance, 2002,154(1):85?100.
    [69] Mishra A, Lu Y, Meng J, Anderson AW, Ding MZ. Unified framework for anisotropic interpolation and smoothing for diffusion tensor images. NeuroImage, 2006,31(4):1525?1535.
    [70] Lazar M, Weinstein DM, Tsuruda JS, Hasan KM, Arfanakis K, Meyerand ME, Badie B, Rowley HA, Haughton V, Field A, Alexander AL. White matter tractography using diffusion tensor deflection. Human Brain Mapping, 2003,18(4):306?321.
    [71] Parker GJ, Stephan KE, Barker GJ, Rowe JB, MacManus DG, Wheeler-Kingshott CAM, Ciccarelli O, Passingham RE, Spinks RL, Lemon RN, Turner R. Initial demonstration of in vivo tracing of axonal projections in the macaque brain and comparison with the human brain using diffusion tensor imaging and fast marching tractography. NeuroImage, 2002,15(4):797?809.
    [72] Parker GJ, Haroon HA, Wheeler-Kingshott C. A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. Journal of Magnetic Resonance Imaging, 2003,18(2):242?254.
    [73] Hagmann P, Thiran JP, Jonasson L, Vandergheynst P, Clarke S, Maeder P, Meulib R. DTI mapping of human brain connectivity: statistical fibre tracking and virtual dissection. NeuroImage, 2003,19(3):545?554.
    [74] Sethian JA. A fast marching level set method for monotonically advancing fronts. Proc. of the National Academy of Sciences of the United States of America, 1996,93(4):262?272.
    [75] Butcher J. Alzheimer’s researchers open the doors to data sharing. Lancet Neurology, 2007,6(6):480?481.
    [76] Chen KW, Ge X, Yao L, Bandy D, Alexander GE, Prouty A, Burns C, Zhao XJ, Wen XT, Korn R, Lawson M, Reiman EM. An automated, normative-based fluorodeoxyglucose positron emission tomography image-analysis procedure to aid Alzheimer disease diagnosis using statistical parametric mapping and interactive image display. In: Reinhardt JM, Pluim JPW, eds. Proc. of the SPIE, Vol.6144. 2006. 614453.1?614453.9. doi: 10.1117/12.651069
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵小杰,龙志颖,郭小娟,姚力.阿尔茨海默氏症研究中的磁共振成像数据分析.软件学报,2009,20(5):1123-1138

复制
分享
文章指标
  • 点击次数:8740
  • 下载次数: 16907
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2008-08-30
  • 最后修改日期:2008-12-15
文章二维码
您是第20241800位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号