基于学习的局部几何相似性的医学图像放大
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60525213 (国家自然科学基金); the National Science Fund for Distinguished Young Scholars of China under Grant No.U0735001 (国家杰出青年科学基金-广东联合基金); the National Basic Research Program of China under Grant No.2006CB303106 (国家重点基础研究发展计划(973)); the Cultivation Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China under Grant No.706045 (国家教育部科技创新工程重大项目); the Research Fund for the Doctoral Program of Higher Education of China under Grant No.20060558078 (国家教育部博士点基金)


Learning-Based Medical Image Magnification Algorithm by Local Geometric Similarity
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    图像放大技术是医学图像处理中的重要领域.医学图像细节丰富处经常呈现出明显的几何结构特征或模式,如边缘.提出了一种基于学习的方法,将低分辨率图像块作为可用的邻域像素并提取其几何特征信息组成训练集,与高分辨率图像块之间建立局部对应关系,这种对应关系即为局部几何相似性.将训练集信息有效传递至待重建高分辨率图像块,图像放大的问题转化为重建系数的最优化问题,并且基于非局部平均思想,将其进而转化为加权最小二乘问题得到正则化解.实验结果表明,本方法不仅可以进行任意倍图像放大,且它可以摆脱一般方法对训练集合的依赖,具有较好的独立性,自适应性和边缘保持特性.

    Abstract:

    Image magnification is an important technology in medical image processing. High detail areas in medical images most often have a definite geometric structure or pattern, such as in the case of edges. This paper proposes a learning-based method. Geometric features extracted from the available neighboring pixels in the Low-resolution (LR) image form the training set. Assuming the training set is locally corresponding to geometric features from the High-resolution (HR) image patch to be reconstructed. Local geometric similarity is described as the correspondence. The task of image magnification is formulated as an optimization problem, where the optimization coefficients can adaptively tune its value to effectively propagating the features from the training set to the target HR image patch. The advantages are the ability to produce a magnified image by any factor, and not require any outlier supporters. A Weighted Least Square (WLS) method is provided to offer a convenient way of finding the regularized optimal solution, where the weight function is determined by the non-local means. Simulation and comparison results show that the proposed method is independent, adaptive and can produce sharp edges with rare ringing or jaggy artifacts.

    参考文献
    [1] Hwang JW, Lee HS. Adaptive image interpolation based on local gradient features. IEEE Signal Processing Letters, 2004,11(3): 359?362.
    [2] Cha Y, Kim S. The error amended sharp edge (EASE) scheme for image zooming. IEEE Trans. on Image Processing, 2007,16(6): 1496?1505.
    [3] Muresan DD. Fast edge directed polynomial interpolation. In: Proc. of the Int’l Conf. on Image Processing. 2005. 840?843.
    [4] Jensen K, Anastassiou D. Subpixel edge localization and the interpolation of still images. IEEE Trans. Image Process, 1995,4(3): 285?293.
    [5] Leu JG. Sharpness preserving image enlargement based on a ramp edge model. Pattern Recognition, 2001,34(10):1927?1938.
    [6] Battiato S, Gallo G, Stanco F. A locally adaptive zooming algorithm for digital images. Image Vision and Computing, 2002,20(11): 805?812.
    [7] Morse BS, Schwartzwald D. Image magnification using level-set reconstruction. In: Proc. of the Computer Vision and Pattern Recognition. 2001. 333?340.
    [8] Gilboa G, Sochen G, Zeevi YY. Forward-and-Backward diffusion process for adaptive image enhancement and denoising. IEEE Trans. on Image Processing, 2002,11(7):689?703.
    [9] Fattal R. Image upsampling via imposed edges statistics. ACM Trans. on Graphics, 2007,26(3):95.
    [10] Sun J, Xu ZB, Shum HY. Image super-resolution using gradient profile prior. In: Proc. of the Computer Vision and Pattern Recognition. 2008. 97?101.
    [11] Yang JC, John W, Ma Y, Huang T. Image super-resolution as a sparse representation of raw image patches. In: Proc. of the Computer Vision and Pattern Recognition. 2008. 333?340.
    [12] Freeman WT, Jones WT, Pasztor TR. Example-Based super-resolution. IEEE Computer Graphics and Applications, 2002,22(2): 56?65.
    [13] Muresan D, Parks TW. Adaptively quadratic (AQua) image interpolation. IEEE Trans. on Image Process, 2004,13(5):690?698.
    [14] Min L, Truong Q. Markov random field model-based edge-directed image interpolation. In: Proc. of the Int’l Conf. on Image Processing. 2008. 1121?1128.
    [15] Li X, Orchard XT. New edge-directed interpolation. IEEE Trans. on Image Process, 2001,10(10):1521?1526.
    [16] Xin L. Edge directed statistical inference and its application [Ph.D. Thesis]. Princeton University, 2000.
    [17] Kang MG, Katsagelos AK. Simultaneous iterative image restoration and evaluation of the regularization parameter. IEEE Trans. Signal Process, 1992,40(3):2329?2334.
    [18] Buades A, Coll B, Morel JM, A non local algorithm for image denoising. In: Proc. of the IEEE Int’l Conf. on Computer Vision and Pattern Recognition. 2005. 60?65.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

潘琪,罗笑南,朱继武.基于学习的局部几何相似性的医学图像放大.软件学报,2009,20(5):1146-1155

复制
分享
文章指标
  • 点击次数:8863
  • 下载次数: 9291
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2008-09-24
  • 最后修改日期:2008-12-15
文章二维码
您是第19731816位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号