基于二维经验模态分解的医学图像融合算法
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60673024 (国家自然科学基金); the National Basic Research Program of China under Grant No.2004CB719401 (国家重点基础研究发展计划(973))


Medical Image Fusion Algorithm Based on Bidimensional Empirical Mode Decomposition
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    提出了一种自适应的二维经验模态分解(bidimensional empirical mode decomposition,简称BEMD)医学图像融合算法.待融合的医学图像经过BEMD分解成二维的内蕴模函数(bidimensional intrinsic mode function,简称BIMF)和趋势图像.BIMF图像经过Hilbert-Huang变换提取图像特征,然后,图像分解的各部分数据在区域融合规则下形成综合BEMD表示.最后,综合BEMD表示进行BEMD逆变换得到融合后的医学图像.BEMD分解方法是一种完全自适应的数据分解表达形式,具有比Fourier变化和小波分解更好的特性.该医学图像融合算法不需要预先定义滤波器或小波函数.实验结果表明,该算法与传统融合算法相比性能优越,能够大幅度提高融合图像的质量.

    Abstract:

    An adaptive medical image fusion algorithm based on the representation of bidimensional empirical mode decomposition (BEMD) is proposed. Source medical images are decomposed into a number of bidimensional intrinsic mode functions (BIMF) as well as a residual image. Image features are extracted through Hilbert-Huang transform on the BIMF. Then the composite BEMD is formed by region-based fusion rules on data representations of BEMD. Finally, the fused image is obtained by inverse BEMD on the composite representation. The BEMD is an adaptive data decomposition representation, and has better performance than Fourier and wavelet transform. The proposed algorithm does not need predetermined filters or wavelet functions. Experimental results show that the proposed algorithm provides superior performance over conventional fusion algorithms in improving the quality of fused images.

    参考文献
    [1] Qu GH, Zhang DL, Yan PF. Medical image fusion by wavelet transform modulus maxima. Optics Express, 2001,9(4):184?190.
    [2] Ardeshir GA, Nikolov S. Image fusion: Advances in the state of the art. Information Fusion, 2007,8(2):114?118.
    [3] Piella G. Adaptive wavelets and their applications to image fusion and compression [Ph.D. Thesis]. Amsterdam: University of Amsterdam, 2003.
    [4] Pajares G, de la Cruz JM. A wavelet-based image fusion tutorial. Pattern Recognition, 2004,37(9):1855?1872.
    [5] Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. of the Royal Society of London, 1998,A454:903?995.
    [6] Damerval C, Meignen S, Perrier V. A fast algorithm for bidimensional EMD. IEEE Signal Processing Letters, 2005,12(10): 701?704.
    [7] Nunes JC, Bouaoune Y, Delechelle E, Niang O, Bunel P. Image analysis by bidimensional empirical mode decomposition. Image and Vision Computing, 2003,21(12):1019?1026.
    [8] Nunes JC, Guyot S, Delechelle E. Texture analysis based on local analysis of the bimensional empirical mode decomposition. Machine Vision and applications, 2005,16(3):177?188.
    [9] Wang J, Zhang JX, Liu ZJ. EMD based multi-scale model for high resolution image fusion. Geo-Spatial Information Science, 2008, 11(1):31?37.
    [10] Huang NE, Shen Z, Long SR. A new view of nonlinear water waves: The Hilbert spectrum. Annual Reviews of Fluid Mechanics, 1999,31:417?457.
    [11] Cheng JS, Yu DJ, Yang Y. Research on the intrinsic mode function (IMF) criterion in EMD method. Mechanical Systems and Signal Processing, 2006,20(4):817?824.
    [12] Vincent L. Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms. IEEE Trans. on Image Process, 1993,2(2):176?201.
    [13] Zheng YZ, Hou XD, Bian TT, Qin Z. Effective image fusion rules of multi-scale image decomposition. In: Petrou M, Saramaki T, Ercil A, Loncaric S, eds. Proc. of the 5th Int’l Symp. on Image and Signal Processing and Analysis. Istanbul: IEEE, 2007. 362?366.
    [14] Felzenszwalb PF, Huttenlocher DP. Efficient graph-based image segmentation. Int’l Journal of Computer Vision, 2004,59(2): 167?181.
    [15] Piella G, Heijmans H. A new quality metric for image fusion. In: SuviSoft Oy Ltd., ed. Proc. of the 2003 Int’l Conf. on Image Processing, Vol.3. Barcelona: IEEE, 2003. 173?176.
    [16] Xydeas CS, Petrovi? V. Objective image fusion performance measure. Electronics Letters, 2000,36(4):308?309.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑有志,覃征.基于二维经验模态分解的医学图像融合算法.软件学报,2009,20(5):1096-1105

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-08-30
  • 最后修改日期:2008-12-15
文章二维码
您是第19727454位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号