基于水平集接力的图像自动分割方法
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60771068 (国家自然科学基金); the National Basic Research Program of China under Grant No.2006CB705700 (国家重点基础研究发展计划(973))


Automatic Image Segmentation Method Using Sequential Level Set
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了实现图像的完全分割,基于无须重新初始化的水平集方法提出了一种接力水平集方法.该方法在待分割图像中自动交替地创建嵌套子区域和相应的初始水平集函数,使水平集函数在其中演化并收敛,然后重复这个过程直到子区域面积为0.与原始算法及经典的基于区域的水平集方法相比,该方法具有如下优点:1) 自动完成,无须交互式的初始化;2) 多次分割图像,能够比原始算法检测到更多的边缘;3) 对于非匀质的图像,能够取得比经典的基于区域的水平集方法更好的分割效果;4) 提供一个开放的分割算法框架,其他单水平集方法稍作修改后也可替换这里所使用的单水平集方法.实验结果表明,此算法对人造图像和医学影像实现了无须交互的完全分割,对非匀质图像分割表现出更好的鲁棒性.

    Abstract:

    Based on the level set method without re-initialization, a sequential level set method is proposed to realize full image segmentation. The proposed method automatically and alternatively creates nested sub-regions or the corresponding initial level set functions in the image to be segmented, and then makes the level set function evolved to be convergence in the corresponding sub-region. This step is sequentially repeated until the sub-region vanishes. Compared with the original method and a representative region-based level set method, the proposed method has many advantages as follows: 1) It is automatically executed and does not need the interactive initialization anymore; 2) It segments image more than once and detects more boundaries than the original method; 3) It can get better performance on non-homogenous images than the representative region-based level set method; 4) It is an open image segmentation framework in which the single level set method is used can be replaced by other single level set methods after some modification. Experimental results indicate that the proposed method could fully segment the synthetic and medical images without interactive step and additionally works more robust on non-homogenous images.

    参考文献
    [1] Zhang YJ. Advances in Image and Video Segmentation. Hershey: IRM Press, 2006. 1?15.
    [2] Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. Int’l Journal of Computer Vision, 1988,1(4):321?331.
    [3] Xu CY, Prince JL. Snakes, shapes, and gradient vector flow. IEEE Trans. on Image Processing, 1998,7(3):359?369.
    [4] Adalsteinsson D, Sethian JA. A fast level set method for propagating interfaces. Computational Physics, 1995,118(2):269?277.
    [5] Chan TF, Vese LA. Active contours without edges. IEEE Trans. on Image Processing, 2001,10(2):266?277.
    [6] Li CM, Xu CY, Gui CF, Fox MD. Level set evolution without re-initialization: A new variational formulation. In: Schmid C, Soatto S, Tomasi C, eds. Proc. of the 2005 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society Press, 2005. 430?436.
    [7] Malladi R, Sethian JA, Vemuri BC. Shape modeling with front propagation: A level set approach. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(2):158?175.
    [8] Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation. Journal of Computational Physics, 1988,79(1):12?49.
    [9] Osher S, Fedkiw R. Level Set Methods and Dynamics Implicit Surfaces. New York: Springer-Verlag, 2003. 1?36.
    [10] Peng DP, Merriman B, Osher S, Zhao HK, Kang M. A PDE based fast local level set method. Journal of Computational Physics, 1999,155(2):410?438.
    [11] Sethian JA. Level Set Methods and Fast Marching Methods. 2nd ed., Cambridge: Cambridge University Press, 1999. 127?140.
    [12] Suri JS, Liu KC, Singh S, Laxminarayan SN, Zeng XL, Reden L. Shape recovery algorithms using level sets in 2-D/3-D medical imagery: A state-of-the-art review. IEEE Trans. on Information Technology in Biomedicine, 2002,6(1):8?28.
    [13] Chopp DL. Computing minimal surfaces via level set curvature flow. Journal of Computational Physics, 1993,106(1):77?91.
    [14] Sussman M, Smereka P, Osher S. A level set approach for computing solutions to incompressible two-phase flow. Computational Physics, 1994,114(1):146?159.
    [15] Gomes J, Faugeras O. Reconciling distance functions and level sets. Visual Communication and Image Representation, 2000,11(2): 209?223.
    [16] Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 1989,42(5):577?685.
    [17] Mumford D, Shah J. Boundary detection by minimizing functionals. In: Ullman S, Richards W, eds. Proc. of the 1985 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society Press, 1985. 22?26.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王斌,高新波.基于水平集接力的图像自动分割方法.软件学报,2009,20(5):1185-1193

复制
分享
文章指标
  • 点击次数:8948
  • 下载次数: 11695
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2008-08-30
  • 最后修改日期:2008-12-15
文章二维码
您是第20541114位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号