Monte Carlo方法在扩散光学成像仿真中的应用
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.30672690, 30600151, 90209008, 60532050, 60621001, 30873462 (国家自然科学基金); the National Basic Research Program of China under Grant No.2006CB705700 (国家重点基础研究发展计划(973)); the Program for Cheung Kong Scholars and Innovative Research Team in University of China under Grant No.IRT0645 (长江学者和创新团队发展计划); the CAS Hundred Talents Program (中国科学院百人计划); the CAS Scientific Research Equipment Develop Program under Grant Nos.YZ0642, YZ200766 (中国科学院科研装备研制项目); the Joint Research Fund for Overseas Chinese Young Scholars under Grant No.30528027 (海外青年学者合作研究基金); the Beijing Municipal Natural Science Foundation of China under Grant No.4071003 (北京市自然科学基金)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [53]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    综述了描述前向问题的各种模型,包括解析解方法、数值方法和统计方法.特别地,就生物自发光多谱段光源的实例介绍了Monte Carlo方法.在光学成像领域,针对不同的成像模态、对成像质量的要求以及所需要的信息,MC方法有3种主要形式:连续波、时域和频域.不仅揭示了每种形式的基本原理,同时也相应地介绍了其在本领域的典型应用及软件.通过这些应用可以看出,MC方法对于扩散光学成像,特别是最近几年的在体无创实时成像的发展发挥着重要作用.

    Abstract:

    This paper reviews the models of the forward problem, which are analytic solution, numerical solution and the statistic solution. Especially, a case of the Monte Carlo (MC) method when a bioluminescence source in multi-spectral mode is embedded in the tissue is introduced. In the field of optical imaging, according to different imaging modalities, the demand for imaging quality and the extracted information, there are three major categories: continuous waves, time-domain, and frequency-domain. Here not only the fundamental principles for each category are presented, but some typical applications and softwares using MC method are also particularly introduced. On the basis of these applications, it is believed that the MC method plays an indispensable role in the development of diffuse optical imaging, especially in vivo, no-invasive imaging in recent years.

    参考文献
    [1] Rice W, Cable MD, Neleson MB. In vivo imaging of light-emitting probes. Journal of Biomedical Optics, 2001,6(4):432?440.
    [2] Ray P, Wu AM, Gambhir SS. Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice. Cancer Research, 2003,63(6):1160?1165.
    [3] Gibson AP, Hebden JC, Arridge SR. Recent advances in diffuse optical imaging. Physics in Medicine and Biology, 2005,50(4): R1?R43.
    [4] Ntziachristos V, Ripoll J, Wang LHV, Weisslder R. Looking and listening to light: The evolution of whole body photonic imaging. Nature Biotechnology, 2005,23(3):313?320.
    [5] Wang LHV, Wu H. Biomedical Optics: Principles and Imaging. Hoboken: Wiley-InterScience, 2007. 83?118.
    [6] Cong WX, Wang LHV, Wang G. Formulation of photon diffusion from spherical bioluminescent sources in an infinite homogeneous medium. Biomedicine Engineering Online, 2004,3(12):1?6.
    [7] Wang D, Song X, Bai J. Adaptive-Mesh-Based algorithm for fluorescence molecular tomography using an analytical solution. Optics Express, 2007,15(15):9722?9730.
    [8] Ripoll J, Ntziachristos V, Carminati R, Nieto-Vesperinas M. Kirchhoff approximation for diffusive waves. Physical Review E, 2001,E(64):0519171?0519178.
    [9] Arridge SR. Optical tomography in medical imaging. Inverse Problems, 1999,15(2):R41?R93.
    [10] Arridge SR, Schweiger M, Hiraoka M, Delpy DT. A finite element approach for modeling photon transport in tissue. Medical Physics, 1993,20(2):299?309.
    [11] Song X, Wang D, Chen N, Bai J, Wang H. Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm. Optics Express, 2007,15(26):18300?18317.
    [12] Bluestone AY, Abdouleav G, Schmitz CH, Barbour RL, Hielscher AH. Three-Dimensional optical tomography of hemodynamics in the human head. Optics Express, 2001,9(6):272?286.
    [13] Hielscher AH, Klose AD, Scheel AK, Moa-Anderson B, Backhaus M, Netz U, Beuthan J. Sagittal laser optical tomography for imaging of rheumatoid finger joints. Physics in Medicine and Biology, 2004,49(7):1147?1163.
    [14] Ren K, Abdoulaev GS, Bal G, Hielscher AH. Algorithm for solving the equation of radiative transfer in the frequency domain. Optics Letters, 2004,29(6):578?580.
    [15] Ripoll J, Ntziachristos V. Iterative boundary method for diffuse optical tomography. Journal of the Optical Society of America A, 2003,20(6):1103–1110.
    [16] Heino J, Arridge SR, Sikora J, Somersalo E. Anisotropic effects in highly scattering media. Physical Review E, 2003,68(3): 031908-1–031908-8.
    [17] Cong W, Wang G. Boundary integral method for bioluminescence tomography. Journal of Biomedical Optics, 2006,11(2): 020503-1–020503-3.
    [18] Hebden JC, Arridge SR, Delpy DT. Optical imaging in medicine: I. Experimental techniques. Physics in Medicine and Biology, 1997,42(5):825?840.
    [19] Gandjbakhche AH, Bonner RF, Nossal R, Weiss GH. Absorptivity contrast in transillumination imaging of tissue abnormalities. Applied Optics, 1996,35(10):1767?1774.
    [20] Grunbaum FA, Zubelli JP. Diffuse tomography: Computational aspects of the isotropic case. Inverse Problems, 1992,8(3): 421?433.
    [21] Ye JC, Webb KJ, Bouman CA, Millane RP. Optical diffusion tomography by iterative-coordinate-descent optimization in a Bayesian framework. Journal of the Optical Society of America A, 1999,16(10):2400?2412.
    [22] Arridge SR, Hebden JC. Optical imaging in medicine: II. Modeling and reconstruction. Physics in Medicine and Biology, 1997, 42(5):841?853.
    [23] Wilson BC, Adam G. A Monte-Carlo model for the absorption and flux distribution of light in tissue. Medical Physics, 1983,10(6): 824?830.
    [24] Wang LV, Jacques SL, Zheng LQ. CONV-Convolution for responses to a finite diameter photon beam incident on multilayered tissues. Computer Methods and Programs in Biomedicine, 1997,54(1):141?150.
    [25] Li H, Tian J, Wang G. Photon propagation model of in vivo bioluminescent imaging based on Monte Carlo. Journal of Software, 2004,15(11):1709?1719 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/15/1709.htm
    [26] Hielscher AH. Optical tomographic imaging of small animals. Current Opinion in Biotechnology, 2005,16(1):79?88.
    [27] Flock S, Wilson B, Patterson M. Monte Carlo modeling of light propagation in highly scattering tissues—II: Comparison with measurements in phantoms. IEEE Transaction of Biomedicine Engineering, 1989,36(12):1169?1173.
    [28] Wang LV, Jacques SL, Zheng L. MCML-Monte Carlo modeling of light transport in multi-layered tissues. Computer Methods and Programs in Biomedicine, 1995,47(2):131?146.
    [29] Wang LV, Jacques SL. Optimized radial and angular positions in Monte Carlo modeling. Medical Physics, 1994,21(7):1081?1083.
    [30] Flock S, Patterson M, Wilson B, Wyman D. Monte Carlo modeling of light propagation in highly scattering tissues—I: Model predictions and comparison with diffusion theory. IEEE Transaction of Biomedicine Engineering, 1989,36(12):1162?1168.
    [31] Groenhuis RAJ, TenBosch JJ, Ferwerda HA. Scattering and absorption of turbid materials determined from reflection measurements. 2: Measuring method and calibration. Applied Optics, 1983,22(16):2463?2467.
    [32] Chatigny S, Morin M, Asselin D, Painchaud Y, Beaudry P. Hybrid Monte Carlo for photon transport through optically thick scattering Media. Applied Optics, 1999,38(28):6075?6086.
    [33] Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nature Medicine, 2003,9(1):123?128.
    [34] Li H, Tian J, Zhu F, Cong W, Wang LHV, Hoffman EA, Wang G. A mouse optical Simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method. Academic Radiology, 2004,11(9):1029?1038.
    [35] Li H, Tian J, Luo J, Lv Y. Graphic editing tools in bioluminescent imaging simulation. In: Huang DS, Li K, Irwin GW, eds. Proc. of the Int’l Conf. on Intelligent Computing. New York: Springer-Verlag, 2006. 241?250.
    [36] Tian J, Li H, Luo J, Yang W, Liu K. MOSE: A molecular optical simulation environment. http://www.mosetm.net/
    [37] Margallo-Balbás E, French PJ. Shape based Monte Carlo code for light transport in complex heterogeneous tissues. Optics Express, 2007,15(21):14086?14098.
    [38] Chicea D, Turcu I. Testing a new multiple light scattering phase function using RWMCS. Journal of Optoelectronics and Advanced Materials, 2006,8(4):1516?1519.
    [39] Hayashi T, Kashio Y, Okada E. Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region. Applied Optics, 2003,42(16):2888?2896.
    [40] Boas DA, Culver JP, Stott JJ, Dunn AK. Three dimensional Monte Carlo code for photon migration through complex heterogonous media including the adult human head. Optics Express, 2002,10(3):159?170.
    [41] Pfefer T, Barton J, Chan E, Ducros M, Sorg B, Milner T, Nelson J, Welch A. A three-dimensional modular adaptable grid numerical model for light propagation during laser irradiation of skin tissue. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(4):34?942.
    [42] Tuchin VV, Wang LHV, Zimnyakov DA. Optical Polarization in Biomedical Applications. New York: Springer-Verlag, 2007. 70?77.
    [43] Wang X, Wang LHV, Sun CW, Yang CC. Polarized light propagation through the scattering media: Time-Resolved Monte Carlo and experiments. Journal of Biomedical Optics, 2003,8(4):608?617.
    [44] Xu KX, Gao F, Zhao HJ. Biomedical Photonics. Beijing: Science Press, 2007. 212?221 (in Chinese).
    [45] Drexler W, Morgner U, Ghanta RK, K?rtner FX, Schuman JS, Fujimoto JG. Ultrahigh-Resolution ophthalmic optical coherence tomography. Nature Medicine, 2001,7(4):502?507.
    [46] Yao G, Wang LHV. Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media. Physics in Medicine and Biology, 1999,44(9):2307?2320.
    [47] Tu T, Chen Y, Zhang J, Intes X, Chance B. Analysis on performance and optimization of frequency-domain near infrared instruments. Journal of Biomedical Optics, 2002,7(4):643?649.
    [48] Pham TH, Coquoz O, Fishkin JB, Anderson E, Tromberg BJ. Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy. Review of Scientific Instruments, 2000,71(6):2500?2513.
    [49] Fantini S, Franceschini MA, Gratton E. Semi-Infinite geometry boundary problem for light migration in highly scattering media: A frequency-domain study in the diffusion approximation. Review of Scientific Instruments, 1994,11(10):2128?2138.
    [50] Yaroslavsky IV, Yaroslavski AN, Tuchin VV, Schwarzmaier HJ. Effect of the scattering delay on time dependent photon migration in turbid media. Applied Optics, 1997,36(25):6529?6538.
    [51] Testorf M, Osterberg U, Pogue B, Paulsen K. Sampling of time and frequency-domain signals in Monte Carlo simulations of photon migration. Applied Optics, 1999,38(1):236?245. 附中文参考文献:
    [25] 李慧,田捷,王革.基于Monte Carlo在体生物光学成像的光子传输模型.软件学报,2004,15(11):1709?1719. http://www.jos.org.cn/ 1000-9825/15/1709.htm
    [44] 徐可欣,高峰,赵会娟.生物医学光子学.北京:科学出版社,2007.212?221.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘凯,田捷,杨薇,秦承虎,徐敏,刘丹. Monte Carlo方法在扩散光学成像仿真中的应用.软件学报,2009,20(5):1216-1225

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-01-21
  • 最后修改日期:2008-12-15
文章二维码
您是第19727414位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号