梯度向量流的各向异性扩散分析
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60532060, 60775020, 60805016 (国家自然科学基金); the “111 Project” of China under Grant No.B08038 (高等学校学科创新引智计划); the China Postdoctoral Science Foundation under Grant No.20080430201 (中国博士后基金); the Chinese University Scientific Fund under Grant No.QN2009091 (中央高校基本科研业务费专项资金)


Anisotropic Diffusion Analysis of Gradient Vector Flow
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决梯度向量流力场(gradient vector flow,简称GVF)难以进入目标凹部的问题,提出了一种新的主动轮廓模型外力场——各向异性梯度向量流.GVF的扩散项是各向同性且光滑性强的拉普拉斯算子,它在各个方向的扩散速度相同.拉普拉斯算子根据图像的局部结构可分为沿边界法线和切线方向的扩散,沿切线方向的扩散具有增强边界的作用,而法线方向扩散具有去除噪音、扩散力场的作用.基于分析二者在扩散过程中的作用,提出了一种各向异性梯度向量流扩散方法,切线和法线方向的扩散速度可以根据图像的局部结构自适应地选择.实验结果表明,与GVF相比,所提出的方法考虑了扩散过程中法线和切线方向的不同作用,能够进入细长的凹部,并改进了分割结果.

    Abstract:

    A new external force field for active contour model, called anisotropic gradient vector flow, is presented to solve the problem that gradient vector flow (GVF) is difficult to enter the indentation. The diffusion term of GVF is the isotropic and highly smooth Laplacian operator with the same diffusion speed along tangent and normal directions. The diffusion of Laplacian operator is actually decomposed into the tangent and normal directions by the local image structures. Diffusion along the tangent direction enhances the edge, while diffusion along the normal direction removes noise and propagates the force field. This paper develops an anisotropic gradient vector flow based on the analysis of diffusion process of GVF along tangent and normal directions. In the proposed method, the diffusion speeds along the normal and tangent directions are adaptively obtained by the local structure of the image. The experimental results show that compared with GVF, the proposed method considering these two diffusion actions can enter long, thin indentation and improve the segmentation.

    参考文献
    相似文献
    引证文献
引用本文

宁纪锋,吴成柯,姜光,刘侍刚.梯度向量流的各向异性扩散分析.软件学报,2010,21(4):612-619

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-04-07
  • 最后修改日期:2008-11-10
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号