缓存敏感的封闭冰山立方体计算
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60496325, 60873017 (国家自然科学基金); the Grant from HP Labs China (惠普中国实验室资助项目)


Cache-Conscious Computation of Closed Iceberg Cubes
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    数据立方体计算通常会产生大量的输出结果,冰山立方体和封闭立方体是解决这个问题的比较流行的两种策略,二者可以结合使用.鉴于封闭冰山立方体(closed iceberg cube)的重要性和实用性,如何高效地计算封闭冰山立方体是一个值得研究的问题.提出一种缓存敏感(cache-conscious)的计算封闭冰山立方体的方法,在自底向上对数据进行聚集的同时,寻找覆盖聚集单元的封闭单元,将其输出,使用两种策略进行剪枝,去掉不必要的递归,同时使用Apriori剪枝技术,支持冰山立方体(iceberg cube)的计算.为了减少与内存相关的延迟,快速得到聚集结果,对多个维进行预排序,并将软件预取技术引入到数据扫描中.在模拟数据和真实数据上进行了详细而全面的实验研究,结果表明,封闭冰山立方体的计算方法是快速、有效的.

    Abstract:

    The computation of data cubes usually produces huge outputs. There are two popular methods to solve this problem: Iceberg cube and closed cube, which can be combined together. Due to the importance and usability of closed iceberg cube, how to efficiently compute it becomes a key research issue. A cache-conscious computation method is proposed in this paper. The data are aggregated in a bottom-up manner. In the meantime, the closed cells covering the aggregate cells are discovered and output. Two pruning strategies are used to save unnecessary recursive calls. The Apriori pruning is utilized to support iceberg cube computation. To reduce the number of memory-related stalls and produce the aggregate results efficiently, multiple dimensions are pre-sorted and the software prefetching technology is introduced into data scans. A comprehensive and detailed performance study is conducted on both synthetic data and real data sets. The results show that the proposed closed iceberg cube computation method is efficient and effective.

    参考文献
    相似文献
    引证文献
引用本文

栾华,杜小勇,王珊.缓存敏感的封闭冰山立方体计算.软件学报,2010,21(4):620-631

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-05-14
  • 最后修改日期:2008-10-09
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号