摘要:引入一种按邻点对的相似性权值计算次数来归类Laplacian 的思想,并从理论上证明了包含多次相似性权值计算的Laplacian 构造比只计算一次或两次相似性权值的Laplacian 构造更能精细地刻画数据局部几何结构.据此提出了一种新的更能胜任自然图像景物提取任务的Laplacian 构造方法.该方法通过任意一对相邻像素在不同局部邻域内建立一个线性学习模型来重构不同的相似性权值.结合用户提供的部分前、背景标记约束,导出求解景物提取的半监督二次优化目标函数.当考虑通过对前、背景抽样来估计未知像素的颜色值时,优化目标可以迭代求解.更有意义的是,该迭代方法可以成功地将原来构造的其他Laplacian 推广应用于只提供稀疏指示条带的景物提取问题中.理论分析与实验结果均证实,所构造的Laplacian 能够更充分地表达图像像素间的内在结构,能以更精细的方式约束传播前、背景的成分比例而不仅仅是标号,从而获得更优的景物提取效果.