LBS 中连续查询攻击算法及匿名性度量
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60473052, 60773180 (国家自然科学基金); theNatural Science Foundation of Zhejiang Province of China under Grant No.Y106427 (浙江省自然科学基金); the Int’l ScientificCollaborate Foundation of Shanghai of China under Grant No.075107006 (上海市国际科技合作基金)


Attacking Algorithms Against Continuous Queries in LBS and Anonymity Measurement
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    k-匿名机制是LBS(location based service)中保证查询隐私性的重要手段.已有文献指出,现有的k-匿名机 制不能有效保护连续性查询的隐私性.提出一种连续查询发送模型,该模型融合了查询发送时间的间隔模型和连续性模型,针对此模型下的两种k-匿名算法Clique Cloaking 和Non-clique Cloaking,分别提出了一种连续查询攻击算 法.在此攻击算法下,匿名集的势不再适合作为查询匿名性的度量,因此提出一种基于熵理论的度量方式AD(anonymity degree).实验结果表明,对连续性很强的查询,攻击算法重识别用户身份的成功率极高;AD 比匿名集的势更能反映查询的匿名性.

    Abstract:

    k-Anonymity is an important solution to protecting privacy of queries in LBS (location-based service).However, it is pointed out in literatures that k-anonymity cannot protect privacy of continuous queries effectively. Acontinuous query issuing model is proposed, which incorporates a query issuing interval model and a consecutivequeries relationship model. Under this continuous query issuing model, two attacking algorithms are proposed forClique Cloaking and Non-clique Cloaking respectively. Then this paper argues that the cardinality of anonymity-setis not a good anonymity measurement under such attack and an entropy-based anonymity measurement AD(anonymity degree) is proposed. Experimental results demonstrate that the attacking algorithms have high successrate in identifying query senders when the consecutive queries have strong relationship, and that AD is a betteranonymity measurement than the cardinality of anonymity-set.

    参考文献
    [1] Abowd G, Atkeson C, Hong J, Long S, Kooper R, Pinkerton M. Cyberguide: A mobile context-aware tour guide. ACM WirelessNetworks, 1997,3(5):421?433.
    [2] Bisdikian C, Christensen J, Davis J, Ebling M, Hunt G, Jerome W, Lei H, Maes S. Enabling location-based applications. In:Devarakonda M, et al., eds. Proc. of the 1st Workshop on Mobile Commerce. Roma: ACM, 2001. 38?42.
    [3] Jose R, Davies N. Scalable and flexible location-based services for ubiquitous information access. In: Gellersen H, ed. Proc. of the 1st Int’l Symp. on Hand-Held and Ubiquitous Computing. LNCS 1707, Heidelberg: Springer-Verlag, 1999. 52?66.
    [4] Gruteser M, Grunwald D. Anonymous usage of location-based services through spatial and temporal cloaking. In: Siewiorek D, et al., eds. Proc. of the USENIX MobiSys. San Francisco: ACM, 2003. 31?42.
    [5] Machanavajjhala A, Gehrke J, Kifer D. l-Diversity: Privacy beyond k-anonymity. In: Jain R, et al., eds. Proc. of the Int’l Conf. on Data Engineering. Atlanta: IEEE, 2006. 24?24.
    [6] Gedik B, Liu L. Location privacy in mobile systems: A personalized anonymization model. In: Lai H, ed. Proc. of the Int’l Conf. on Distributed Computing Systems. Columbus: IEEE, 2005. 620?629.
    [7] Yang X, Liu X, Wang B, Yu G. k-Anonymization approaches for supporting multiple constraints. Journal of Software, 2006,17(5):1222?1231 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/17/1222.htm
    [8] Ghinita G, Kalnis P, Skiadopoulos S. PRIVE: Anonymous location-based queries in distributed mobile systems. In: Williamson C,et al., eds. Proc of the World Wide Web. Banff: ACM, 2007. 371?380.
    [9] Mokbel M, Chow C, Aref W. The new casper: A privacy-aware location-based database server. In: Dogac A, et al., eds. Proc. of the Int’l Conf. on Data Engineering. Istanbul: IEEE, 2007. 763?774.
    [10] Mokbel M, Xiong X, Aref W. SINA: Scalable incremental processing of continuous queries in spatio-temporal databases. In: Konig A, et al., eds. Proc. of the ACM SIGMOD. Paris: ACM, 2004. 623?634.
    [11] Xiong X, Mokbel M, Aref W. SEA-CNN: Scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases. In: Aberer K, et al., eds. Proc. of the Int’l Conf. on Data Engineering. Tokyo: IEEE, 2005. 643?654.
    [12] Huang X, Jensen C. Towards a streams-based framework for defining location-based queries. In: Nascimento A, et al., eds. Proc. of the Int’l Workshop on Spatio-Temporal Database Management. Toronto: ACM, 2004. 73?80.
    [13] Mokbel M, Aref W. SOLE: Scalable online execution of continuous queries on spatiotemporal data streams. The Int’l Journal on Very Large Data Bases, 2008,17(5):971?995.
    [14] Chow C, Mokbel M. Enabling private continuous queries for revealed user locations. In: Kollios G, et al., eds. Proc. of the Int’l Symp. on Spatial and Temporal Databases. Boston: Springer-Verlag, 2007. 258?275.
    [15] Shannon C. A mathematical theory of communication. Bell System Technical Journal, 1948,27(7):379–423; 623–656.
    [16] Brinkhoff T. A framework for generating network-based moving objects. Geoinformatica, 2002,6(2):153?180. 附中文参考文献:
    [7] 杨晓春,刘向宇,王斌,于戈.支持多约束的k-匿名化方法.软件学报,2006,17(5):1222?1231. http://www.jos.org.cn/1000-9825/17/1222.htm
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

林欣,李善平,杨朝晖. LBS 中连续查询攻击算法及匿名性度量.软件学报,2009,20(4):1058-1068

复制
分享
文章指标
  • 点击次数:6816
  • 下载次数: 8177
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2007-12-08
  • 最后修改日期:2008-08-11
文章二维码
您是第19856710位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号