一种基于图像表观的鲁棒姿态估计方法
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60673091 (国家自然科学基金); the NationalHigh-Tech Research and Development Plan of China under Grant Nos.2006AA01Z122, 2007AA01Z163 (国家高技术研究发展计划(863)); the 100 Talents Program of the CAS (中国科学院百人计划); the ISVISION Technology Co. Ltd. (上海银晨智能识别科技有限公司)


Robust Appearance-Based Method for Head Pose Estimation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    提出一种利用图像的表观特征进行头部姿态估计的方法.该方法首先使用了一维Gabor 滤波器对头部图像进行特征提取,然后对提取得到的一维Gabor 特征进一步使用了基于核函数的局部费舍尔判别分析方法增强特征的判别能力.与传统二维Gabor 特征相比,一维Gabor 特征除了在计算速度和存储空间上具有明显的优势以外,更与姿态紧密相关.而基于核函数的局部费舍尔判别分析方法,能够解决姿态问题中存在的非线性问题和多模态问题.大量的实验结果表明,该算法对于姿态估计问题是有效的.特别需要指出的是,该算法具有良好的推广能力

    Abstract:

    This paper proposes a new pose estimation method based on the appearance of 2D head image. First, the 1D Gabor filters are used to extract the features on the raw images. Compared with the traditional 2D Gaborrepresents, the 1D Gabor represents are more closely related to the head pose, while the advantages of computation and storage are obvious. Second, for the extracted features, a new method, named kernel local fisher discriminant analysis, is applied to eliminate the multimodal problem, while at the same time enhance the discrimination ability.Experimental results show that the proposed method is effective for pose estimation. It must be pointed out that the generalizability of the proposed method is illustrated by the impressive performance when the training dataset and the testing dataset are heterogeneous.

    参考文献
    [1] Kuchinsky A, Pering C, Creech ML, Freeze D, Sera B, Gwizdka J. FotoFile: A consumer multimedia organization and retrieval system. In: Williams MG, ed. Proc. of the SIGCHI Conf. on Human Factors in Computing Systems: The CHI is the Limit. New York: ACM, 1999. 496-503.
    [2] Ji Q, Hu R. 3D face pose estimation and tracking from a monocular camera. Image and Vision Computing, 2002,20(7):499-511.
    [3] Nikolaidis A, Pitas I. Facial feature extraction and determination of pose. In: Proc. of the NOBLESSE Workshop on Nonlinear Model Based Image Analysis. 1998. 257-262. http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/Nikolaidis A98a.ps.Z
    [4] Xiao J, Moriyama T, Kanade T, Cohn JF. Robust full-motion recovery of head by dynamic templates and re-registration techniques. Int'l Journal of Imaging Systems and Technology, 2003,13:85-94.
    [5] Cootes TF, Walker K, Taylor CJ. View-Based active appearance model. In: Crowley JL, ed. IEEE Int'l Conf. on Automatic Face and Gesture Recognition. Washington: IEEE Computer Society, 2000. 227-232.
    [6] Braathen B, Bartlett MS, Littlewort-Ford G, Movellan JR. 3D head pose estimation from video by nonlinear stochastic particle filtering. In: Proc. of the Annual Joint Symp. on Neural Computation. La Jolla: Institute for Neural Computation. 2001. ftp://ftp.cnl. salk.edu/pub/marni/mplab2001.05.pdf
    [7] Li YM, Gong SG, Liddell H. Support vector regression and classification based multi-view face detection and recognition. In: Crowley JL, ed. Proc. of the Int'l Conf. on Automatic Face and Gesture Recognition. Washington: IEEE Computer Society, 2000. 300-305.
    [8] Chen LB, Zhang L, Hu YX, Li MH, Zhang HJ. Head pose estimation using fisher manifold learning. In: Azada D, ed. IEEE Int'l Workshop on Analysis and Modeling of Faces and Gestures. Washington: IEEE Computer Society, 2003. 203-207.
    [9] Li SZ, Lu XG, Hou XW, Peng XH, Cheng QS. Learning multiview face subspaces and facial pose estimation using independent component analysis. IEEE Trans. on Image Processing, 2005,14(6):705-712.
    [10] Srinivasan S, Boyer KL. Head pose estimation using view based eigenspaces. In: Kasturi R, Laurendeau D, Suen C, eds. Proc. of the Int'l Conf. on Pattern Recognition. Washington: IEEE Computer Society, 2002. 302-305.
    [11] Wei YC, Fradet L, Tan TN. Head pose estimation using gabor eigenspace modeling. In: Reibman A, Knox K, eds. Proc. of the Int'l Conf. on Image. Washington: IEEE Computer Society, 2002. 281-284.
    [12] Raytchev B, Yoda I, Sakaue K. Head pose estimation by nonlinear manifold learning. In: Goldfarb L, ed. Proc. of the Int'l Conf. on Pattern Recognition, Vol.4. Washington: IEEE Computer Society, 2004. 462-466.
    [13] Krüger N, P-tzsch M, Malsburg CVD. Determination of face position and pose with a learned representation based on labeled graphs. Image and Vision Computing, 1997,15(8):665-673.
    [14] Krüger V, Sommer G. Gabor wavelet networks for efficient head pose estimation. Image and Vision Computing, 2002,20(9-10): 665-672.
    [15] Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991,3(1):71-86.
    [16] Belhumeur PN, Hespanha JP, Kriegman DJ. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997,20(7):711-720.
    [17] Sch-lkopf B, Smola A, Müller KR. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998,10:1299-1319.
    [18] Mika S, R-tsch G, Weston J, Scholk-pf B, Müller KR. Fisher discriminant analysis with kernels. In: Larsen, J, Hu YH, Wilson E, Douglas S, eds. Proc. of the Int'l Workshop on Neural Networks for Signal. 1999. 41-48.
    [19] Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000,290:2323-2326.
    [20] Tenenbaum JB, Silva VD, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science, 2000,290: 2319-2323.
    [21] Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Dietterich TG, Becker S, Ghahramani Z, eds. Proc. of the Advances in Neural Information Systems. Cambridge: MIT Press, 2001. 585-591.
    [22] He XF, Niyogi P. Locality preserving projections. In: Thrun S, Saul LK, Sch-lkopf B, eds. Proc. of the Advances in Neural Information Systems. Cambridge: MIT Press, 2003. 153-160.
    [23] Liu J, Chen SC. Discriminant common vectors versus neighbourhood components analysis and Laplacianfaces: A comparative study in small sample size problem. Image and Vision Computing, 2006,24(3):249-262.
    [24] Sugiyama M. Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. Journal of Machine Learning Research, 2007,8:1027-1061.
    [25] Cortes C, Vapnik V. Support vector network. Machine Learning, 1995,20:273-297.
    [26] Tipping ME. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 2001,1:211-244.
    [27] Bartlett MS. Face Image Analysis by Unsupervised Learning. Kluwer Academic Publishers, 2001.
    [28] Gao W, Cao B, Shan SG, Chen XL, Zhou DL, Zhang XH, Zhao DB. The CAS-PEAL large-scale chinese face database and baseline evaluations. IEEE Trans. on Systems, Man, and Cybernetics, Part A, 2008,38(1):149-161.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马丙鹏,山世光,陈熙霖,高文.一种基于图像表观的鲁棒姿态估计方法.软件学报,2009,20(6):1651-1663

复制
分享
文章指标
  • 点击次数:4507
  • 下载次数: 6510
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2007-08-02
  • 最后修改日期:2008-04-15
文章二维码
您是第19791893位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号