基于机器学习的自动协商决策模型
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60775029, 60773177 (国家自然科学基金); the National Basic Research Program of China under Grant No.2003CB317005 (国家重点基础研究发展计划(973))

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    所提出的模型利用协商历史中隐含的信息自动对数据进行标注以形成训练样本,用最小二乘支持向量回归机学习此样本得到对手效用函数的估计,然后结合自己和对手的效用函数构成一个约束优化问题,用遗传算法求解此优化问题,得到的最优解就是己方的反建议.实验结果表明,在信息保密和没有先验知识的条件下,此模型仍然表现出较高的效率和效用.

    Abstract:

    The proposed model labels the negotiation history data automatically by making full use of the implicit information in negotiation history. Then, the labeled data become the training samples of least-squares support vector machine that outputs the estimation of opponent’s utility function. After that, the self’s utility function and the estimation of opponent’s utility function constitute a constraint optimization problem that will be further figured out by genetic algorithm. The optimal solution is the counter-offer of oneself. Experimental results show that the proposed model is effective and efficient in environments where information is private and the prior knowledge is not available.

    参考文献
    [1] Jennings NR, Faratin P, Wooldridge M. Automated negotiation: prospects, methods and challenges. Int’l Journal of Group Decision and Negotiation, 2001,10(2):199?215.
    [2] Du TC, Chen HL. Building a multiple-criteria negotiation support system. IEEE Trans. on Knowledge and Data Engineering, 2007, 19(6):804?817.
    [3] Ragone A, di Noia T, di Sciascio E, Donini FM. Description logics for multi-issue bilateral negotiation with incomplete information. In: Proc. of the 22nd AAAI Conf. on Artificial Intelligence (AAAI 2007). Menlo Park: AAAI Press, 2007. 477?482.
    [4] Fatima SS, Wooldridge M, Jennings NR. Approximate and online multi-issue negotiation. In: Proc. of the 6th Int’l Conf. on Autonomous Agents and Multi-Agent Systems. Heidelberg: Springer-Verlag, 2007. 947?954.
    [5] Mok WWH, Sundarraj RP. Learning algorithms for single-instance electronic negotiations using the time-dependent behavioral tactic. ACM Trans. on Internet Technology, 2005,5(1):195?230.
    [6] Rahwan I, Sonenberg L, Jennings NR, McBurney P. STRATUM: A methodology for designing heuristic agent negotiation strategies. Int’l Journal of Applied Artificial Intelligence, 2007,21(6):489?527.
    [7] Li CH, Giampapa J, Sycara K. Bilateral negotiation decisions with uncertain dynamic outside options. IEEE Trans. on Systems, Man, and Cybernetics—Part C: Applications and Reviews, 2006,36(1):31?44.
    [8] Gerding EH, Poutré HL. Bilateral bargaining with multiple opportunities: Knowing your opponent’s bargaining position. IEEE Trans. on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2006,36(1):45?55.
    [9] Zeng DJ, Sycara K. Bayesian learning in negotiation. Int’l Journal of Human-Computer Studies, 1998,48(1):125?141.
    [10] Coehoorn RM, Jenning NR. Learning an opponent’s preferences to make effective multi-issue negotiation trade-offs. In: Proc. of the 6th Int’l Conf. on E-Commerce. New York: ACM Press, 2004. 59?68.
    [11] Wang LM, Huang HK, Chai YM. Choosing multi-issue negotiating object based on trust and K-armed bandit problem. Journal of Software, 2006,17(12):2537?2546 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/17/2537.htm
    [12] Gao J, Zhang W. An accelerating chaos evolution algorithm of bilateral multi-issue automated negotiation in MAS. Journal of Computer Research and Development, 2006,43(6):1104?1108 (in Chinese with English abstract).
    [13] Lau RYK, Wong O. Mining negotiation knowledge for adaptive negotiation agents in e-marketplaces. In: Proc. of the 40th Hawaii Int’l Conf. on System Sciences. Piscataway: IEEE Computer Society Press, 2007. 130?139.
    [14] Faratin P, Sierra C, Jennings NR. Using similarity criteria to make issue tradeoffs in automated negotiations. Artificial Intelligence, 2002,142(2):205?237.
    [15] Suykens JAK, Vandewale J. Least squares support vector machine classifiers. Neural Processing Letters, 1999,9(3):293?300. 附中文参考文献:
    [11] 王黎明,黄厚宽,柴玉梅.基于信任和K臂赌博机问题选择多问题协商对象.软件学报,2006,17(12):2537?2546. http://www.jos.org.cn/ 1000-9825/17/2537.htm
    [12] 高坚,张伟.多Agent系统中双边多指标自动协商的ACEA算法.计算机研究与发展,2006,43(6):1104?1108.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

程昱,高济,古华茂,傅朝阳.基于机器学习的自动协商决策模型.软件学报,2009,20(8):2160-2169

复制
分享
文章指标
  • 点击次数:5321
  • 下载次数: 7680
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2007-10-22
  • 最后修改日期:2008-04-15
文章二维码
您是第19765701位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号