用于二维不规则排样的离散临界多边形模型
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60773126 (国家自然科学基金); the Natural Science Foundation of Fujian Province of China under Grant No.A0710023 (福建省自然科学基金); the 985 Information Technology Fund of Xiamen University of China under Grant No.0000-X07204 (厦门大学985二期信息科技基金); the Academician Start-Up Fund of Xiamen University of China under Grant No.X01109 (厦门大学院士启动基金)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    提出了一个用于求解二维不规则排样问题的离散临界多边形模型.Burke等人的BLF算法是求解排样问题的一种有效算法,但其算法对一些特殊实例会产生非法的解.为了解决这个问题,提出了一种基于离散临界多边形模型,并对其正确性作了严格证明.新模型是只含有点和区间的简单模型,在大大降低原问题几何复杂性的同时,也使许多启发式策略可以更容易地求解该问题.计算结果表明,基于离散临界多边型模型的排样算法是很有效的.

    Abstract:

    This paper presents a model based on discrete no-fit polygon for the two-dimensional irregular packing problem. Burke et al. have presented an effective BLF algorithm to solve the irregular packing problem, however, their algorithm might generate invalid results for some special cases. To solve this problem, a model based on discrete no-fit polygon is proposed, and its correctness has been strictly proved. Only points and intervals are only considered by this model, which greatly decreases the geometry complexity of the original problem and makes the problem easily solved by many heuristic strategies. Computational results show that the algorithm based on discrete no-fit polygon model is very efficient.

    参考文献
    [1] Cui YD, He DL, Song XX. Generating optimal two-section cutting patterns for rectangular blanks. Computers and Operations Research, 2006,33(6):1505-1520.
    [2] Huang WQ, Chen DB, Xu RC. A new heuristic algorithm for rectangle packing. Computers and Operations Research, 2007,34(11): 3270-3280.
    [3] Zhang DF, Han SH, Ye WG. A bricklaying heuristic algorithm for the orthogonal rectangular packing problem. Chinese Journal of Computers, 2008,31(3):509-515 (in Chinese with English abstract).
    [4] Bennell JA, Oliveira JF. The geometry of nesting problems: A tutorial. European Journal of Operational Research, 2008,184(2): 397-415.
    [5] Babu AR, Babu NR. A generic approach for nesting of 2-D parts in 2-D sheets using genetic and heuristic algorithms. Computer-Aided Design, 2001,33:879-891.
    [6] Bouganis A, Shanahan M. A vision-based intelligent system for packing 2-D irregular shapes. IEEE Trans. on Automation Science and Engineering, 2007,4(3):382-394.
    [7] Zhang YP, Zhang CL, Jiang SW. An effective approach for leather nesting. Journal of Software, 2005,16(2):316-323 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/16/316.htm
    [8] Heckmann R, Lengauer T. A simulated annealing approach to the nesting problem in the textile manufacturing industry. Annals of Operations Research, 1995,57:103-133.
    [9] Fischer AD, Dagli CH. Employing subgroup evolution for irregular-shape nesting. Journal of Intelligent Manufacturing, 2004,15: 187-199.
    [10] Gomes AM, Oliveira JF. A 2-exchange heuristic for nesting problems. European Journal of Operational Research, 2002,141(2): 359-370.
    [11] Gomes AM, Oliveira JF. Solving irregular strip packing problems by hybridising simulated annealing and linear programming. European Journal of Operational Research, 2006,171(3):811-829.
    [12] Liu HY, He YJ. Algorithm for 2-D irregular-shaped nesting problem based on the NFP algorithm and lowest-gravity-center princlple. Journal of Zhejiang University—Science A, 2006,7(4):570-576.
    [13] Bennell JA, Song X. A comprehensive and robust procedure for obtaining the nofit polygon using Minkowski sums. Computers and Operations Research, 2008,35:267-281.
    [14] Egeblad J, Nielsen BK, Odgaard A. Fast neighborhood search for two- and three-dimensional nesting problems. European Journal of Operational Research, 2007,183(3):1249-1266.
    [15] Burke E, Hellier R, Kendall G, Whitwell G. A new bottom-left-fill heuristic algorithm for the two-dimensional irregular packing problem. Operations Research, 2006,54(3):587-601.
    [16] Burke E, Hellier R, Kendall G, Whitwell G. Complete and robust no-fit polygon generation for the irregular stock cutting problem. European Journal of Operational Research, 2007,179(1):27-49. 附中文参考文献:
    [3] 张德富,韩水华,叶卫国.求解矩形Packing问题的砌墙式启发式算法.计算机学报,2008,31(3):509-515.
    [7] 张玉萍,张春丽,蒋寿伟.皮料优化排样的有效方法.软件学报,2005,16(2):316-323. http://www.jos.org.cn/1000-9825/16/316.htm
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张德富,陈竞驰,刘永凯,陈火旺.用于二维不规则排样的离散临界多边形模型.软件学报,2009,20(6):1511-1520

复制
分享
文章指标
  • 点击次数:5242
  • 下载次数: 7732
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2008-01-22
  • 最后修改日期:2008-03-31
文章二维码
您是第19919940位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号