This paper analyzes current mesh simplification methods, and proposes a algorithm based on the quadric error metric (QEM) for feature preserving. It adopts a Half-edge collapse method for mesh simplificationand modifies QEM to remove the discontinuities of appearance attributes. By analyzing the relationships betweenvertices and the discrete appearance seam, a new formula is obtained which enables the edge contraction topostpone the appearance; meanwhile a proper replacer is selected for the wedge in the triangle that has beenaffected by half-edge collapsing operation to avoid material distortion. Experimental results demonstrate that author’s algorithm achieves a similar high efficiency as QEM with desirable geometry and feature-preserving.
[4] Dong WL, Li JK, Jay Kuo CC. Fast mesh simplification for progressive transmission. In: Akansu AN, ed. Proc. of the IEEE Int’l
Conf. on Multimedia & Expo. New York: IEEE Computer Society Press, 2000. 1731?1734.
[5] Luebke D, Reddy M, Cohen J, Varshney A, Watson B, Huebner R. Level of Detail for 3D Graphics. San Francisco: Morgan
Kaufmann Publishers, 2002. 431?467.
[6] Cignoni P, Montani C, Scopigno R. A comparison of mesh simplification algorithms. Computers and Graphics, 1998,22(1):37?54.
[7] Hoppe H. Progressive meshes. In: Rushmeier H, ed. Proc. of the SIGGRAPH. New Orleans: Addison-Wesley Professional, 1996.
99?108.
[8] Hoppe H, DeRose T, Tom Duchamp. Mesh optimization. In: Thomas JJ, ed. Proc. of the SIGGRAPH. Chicago: ACM Press, 1992.
19?26.
[9] Hoppe H. New quadric metric for simplifying meshes with appearance attributes. In: Ebert DS, Gross MH, Hamann B, eds. Proc. of
the IEEE Visualization. Los Alamitos: IEEE Computer Society Press, 1999. 59?66.
[10] Kobbelt L, Campagna S, Seidel HP. A general framework for mesh decimation. In: Davis W, Booth K, Fournier A, eds. Proc. of the
Graphics Interface. New York: ACM Press, 1998. 43?50.
[11] He HG, Tian J, Zhang XP, Zhao MC, Li GM. A survey of mesh simplification. Journal of Software, 2002,13(12):2215?2224 (in
Chinese with English abstract). http://www.jos.org.cn/1000-9825/13/2215.htm
[12] Garland M, Heckbert P. Surface simplification using quadric error metric. In: Whitted T, ed. Proc. of the SIGGRAPH. Los Angeles:
ACM Press, 1997. 209?216.
[13] Garland M, Heckbert PS. Simplifying surfaces with color and texture using quadric error metrics. In: Ebert DS, Rushmeier H,
Hagen H, eds. Proc. of the IEEE Visualization. Washington: IEEE Computer Society Press, 1998. 263?270.
[14] Ronfard R, Rossignac J. Full-Range approximation of triangulated polyhedra. Computer Graphics Forum, 1996,15(3):67?76.
[15] Hoppe H. Effective implementation of progressive meshes. Computer & Graphics, 1998,22(1):27?36.
[17] The Stanford 3D scanning repository. http://graphics.stanford.edu/data/3Dscanrep/
[18] Cignoni P, Rocchini C, Scopigno R. Metro: Measuring error on simplified surfaces. Computer Graphics Forum,
1998,17(2):167?174.
[19] Bouvier E, Gobbetti E. TOM: Totally ordered mesh-A multiresolution structure for time cirtical graphics applications. Int’l Journal
of Image and Graphics, 2001,1(1):115?134.
附中文参考文献:
[1] 潘志庚,庞明勇.几何网格简化研究与进展.江苏大学学报,2005,26(1):67?71.