支持外观属性保持的三维网格模型简化
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60473113, 60533080 (国家自然科学基金)


Mesh Simplification for 3D Models with Feature-Preserving
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    对已有的三维网格简化技术进行分析,利用半边折叠操作对QEM(quadric error metric)算法进行改进,提出了一种基于二次误差测度(QEM)的网格简化算法,解决了非连续外观属性在简化过程中的畸变问题.通过分析顶点与非连续外观接缝的关系,得出了一个新的边折叠代价公式,使得外观畸变在简化过程中尽可能地推迟;并且在执行半边折叠时给受影响的三角形找到了合适的替换wedge,避免外观畸变的发生.实验结果表明,该算法保持了QEM 算法的高效性,同时在几何属性和外观属性上都取得了令人满意的简化效果.

    Abstract:

    This paper analyzes current mesh simplification methods, and proposes a algorithm based on the quadric error metric (QEM) for feature preserving. It adopts a Half-edge collapse method for mesh simplificationand modifies QEM to remove the discontinuities of appearance attributes. By analyzing the relationships betweenvertices and the discrete appearance seam, a new formula is obtained which enables the edge contraction topostpone the appearance; meanwhile a proper replacer is selected for the wedge in the triangle that has beenaffected by half-edge collapsing operation to avoid material distortion. Experimental results demonstrate that author’s algorithm achieves a similar high efficiency as QEM with desirable geometry and feature-preserving.

    参考文献
    [1] Pan ZG, Pang MY. Survey for decimation of geometric meshes. Journal of Jiangsu University, 2005,26(1):67?71 (in Chinese with English abstract).
    [2] Luebke D. A developer’s survey of polygonal simplification algorithms. IEEE Computer Graphics and Applications, 2001,21(3):24?35.
    [3] Hearn D, Baker MP. Computer Graphics. 2nd ed., Upper Saddle River: Prentice Hall/Pearson, 1996. 45?46.
    [4] Dong WL, Li JK, Jay Kuo CC. Fast mesh simplification for progressive transmission. In: Akansu AN, ed. Proc. of the IEEE Int’l Conf. on Multimedia & Expo. New York: IEEE Computer Society Press, 2000. 1731?1734.
    [5] Luebke D, Reddy M, Cohen J, Varshney A, Watson B, Huebner R. Level of Detail for 3D Graphics. San Francisco: Morgan Kaufmann Publishers, 2002. 431?467.
    [6] Cignoni P, Montani C, Scopigno R. A comparison of mesh simplification algorithms. Computers and Graphics, 1998,22(1):37?54.
    [7] Hoppe H. Progressive meshes. In: Rushmeier H, ed. Proc. of the SIGGRAPH. New Orleans: Addison-Wesley Professional, 1996. 99?108.
    [8] Hoppe H, DeRose T, Tom Duchamp. Mesh optimization. In: Thomas JJ, ed. Proc. of the SIGGRAPH. Chicago: ACM Press, 1992. 19?26.
    [9] Hoppe H. New quadric metric for simplifying meshes with appearance attributes. In: Ebert DS, Gross MH, Hamann B, eds. Proc. of the IEEE Visualization. Los Alamitos: IEEE Computer Society Press, 1999. 59?66.
    [10] Kobbelt L, Campagna S, Seidel HP. A general framework for mesh decimation. In: Davis W, Booth K, Fournier A, eds. Proc. of the Graphics Interface. New York: ACM Press, 1998. 43?50.
    [11] He HG, Tian J, Zhang XP, Zhao MC, Li GM. A survey of mesh simplification. Journal of Software, 2002,13(12):2215?2224 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/13/2215.htm
    [12] Garland M, Heckbert P. Surface simplification using quadric error metric. In: Whitted T, ed. Proc. of the SIGGRAPH. Los Angeles: ACM Press, 1997. 209?216.
    [13] Garland M, Heckbert PS. Simplifying surfaces with color and texture using quadric error metrics. In: Ebert DS, Rushmeier H, Hagen H, eds. Proc. of the IEEE Visualization. Washington: IEEE Computer Society Press, 1998. 263?270.
    [14] Ronfard R, Rossignac J. Full-Range approximation of triangulated polyhedra. Computer Graphics Forum, 1996,15(3):67?76.
    [15] Hoppe H. Effective implementation of progressive meshes. Computer & Graphics, 1998,22(1):27?36.
    [16] Garland M. Quadric-Based polygonal surface simplification [Ph.D. Thesis]. Pittsburgh: Carnegie Mellon University, 1995.
    [17] The Stanford 3D scanning repository. http://graphics.stanford.edu/data/3Dscanrep/
    [18] Cignoni P, Rocchini C, Scopigno R. Metro: Measuring error on simplified surfaces. Computer Graphics Forum, 1998,17(2):167?174.
    [19] Bouvier E, Gobbetti E. TOM: Totally ordered mesh-A multiresolution structure for time cirtical graphics applications. Int’l Journal of Image and Graphics, 2001,1(1):115?134. 附中文参考文献: [1] 潘志庚,庞明勇.几何网格简化研究与进展.江苏大学学报,2005,26(1):67?71.
    [11] 何晖光,田捷,张晓鹏,赵明昌,李光明.网格模型化简综述.软件学报,2002,13(12):2215?2224. http://www.jos.org.cn/1000-9825/ 13/2215.htm
    相似文献
引用本文

卢威,曾定浩,,潘金贵.支持外观属性保持的三维网格模型简化.软件学报,2009,20(3):713-723

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2007-10-19
  • 最后修改日期:2008-03-14
文章二维码
您是第19791800位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号