抗独特型克隆选择算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60703107 (国家自然科学基金); the National High-Tech Research and Development Plan of China under Grant No.2009AA12Z210 (国家高技术研究发展计划(863)); the National Basic Research Program of China under Grant No.2006CB705700 (国家重点基础研究发展计划(973)); the Program for New Century Excellent Talents in University under Grant No.NCET-08-0811 (新世纪优秀人才支持计划); the Program for Cheung Kong Scholars and Innovative Research Team in University of China under Grant No.IRT0645 (长江学者和创新团队发展计划)


Clonal Selection Algorithm Based on Anti-Idiotype
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于免疫学中的抗体克隆选择学说,通过引入抗独特型结构,提出了一种用于求解复杂多峰函数优化问题人工免疫系统算法——抗独特型克隆选择算法.该算法通过克隆增殖操作、抗独特型变异操作、抗独特型重组操作和克隆选择操作这4 个操作算子来实现抗体种群的进化,能够同时在同一抗体周围的多个方向进行全局搜索和局部搜索,具有较强的搜索能力.理论分析表明,抗独特型克隆选择算法具有全局收敛性.抗独特型结构的引入充分利用了优势抗体的结构信息,加快了抗体种群的收敛速度,从而以更快的速度获得全局最优解,同时降低了算法陷入局部极值点的几率.实验部分采用4 组不同类型的函数对算法性能进行测试.理论分析及实验结果表明,与克隆选择算法等已有算法相比,该算法性能好,求解精度高,鲁棒性强.

    Abstract:

    Based on the antibody clonal selection theory of immunology, an artificial immune system algorithm, clonal selection algorithm based on anti-idiotype (AICSA), is proposed to deal with complex multi-modaloptimization problems by introducing the anti-idiotype. This algorithm evolves and improves the antibodypopulation through clonal proliferation, anti-idiotype mutation, anti-idiotype recombination and clonal selection operation, which can perform global search and local search in many directions rather than one direction around the identical antibody simultaneously. Theoretical analysis proves that AICSA can converge to the global optimum. By introducing the anti-idiotype, AICSA can make the most of the structure information of antibodies, accelerate the convergence, and obtain the global optimization quickly. In experiments, AICSA is tested on four different types of functions and compared with the clonal selection algorithm and other optimization methods. Theoretical analysis and experimental results indicate that AICSA achieves a good performance, and is also an effective and robust technique for optimization.

    参考文献
    相似文献
    引证文献
引用本文

张立宁,公茂果,焦李成,马文萍.抗独特型克隆选择算法.软件学报,2009,20(5):1269-1281

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2007-09-04
  • 最后修改日期:2008-01-29
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号