基于流形学习与隐条件随机场的人体动作识别
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60675021 (国家自然科学基金); the National High-Tech Research and Development Plan of China under Grant No.2006AA01Z120 (国家高技术研究发展计划(863)


Human Action Recognition Using Manifold Learning and Hidden Conditional Random Fields
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出了一种基于流形学习与隐条件随机场(hidden conditional random fields,简称HCRF)的动作识别方法.算法提取人体剪影作为输入特征,采用有监督的保持邻域嵌入(neighborhood preserving embedding,简称NPE)的子空间学习算法获得高维运动特征的低维流形表示,基于HCRF建模运动特征与动作语义之间的映射关系.在降维过程中,通过保持数据的局部邻接关系,NPE可以获取动作特征在低维流形空间上的本质分布特性.与HMM(hidden Markov model)等产生式模型相比,HCRF侧重从样本数据中抽取共有特征以获取正确的分类边界,不需要假定观测过程条件独立,可以更加自然地对动作的时空邻域关系进行建模.实验结果表明,即便对于特征差异较大或存在噪声干扰的动作序列,算法也能取得较好的识别效果.

    Abstract:

    This paper presents a probabilistic method of human action recognition based on manifold learning and Hidden Conditional Random Fields (HCRF). A supervised Neighborhood Preserving Embedding (NPE) is employed for dimensionality reduction by preserving the local neighborhood structure on the data manifold. Most existing approaches to action recognition use a Hidden Markov Model or suitable variant to model actions; a significant limitation of these models is the requirements of conditional independence of observations. In addition, generative models are selected to maximize the likelihood of generating all the examples of a given class and may not uncover the distinctive configuration that sets one class uniquely against others. HCRF relaxes the independence assumption and classifies actions in a discriminative hidden-state formulation. Experimental results on a recent database have demonstrated that this approach can recognize human actions accurately with temporal, intra- and inter-person variations even when noise and other factors such as partial occlusion exist.

    参考文献
    [1] Moeslund TB, Hilton A, Kruger V. A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding, 2006,104(23):90-126.
    [2] Wang L, Hu WM, Tan TN. A survey of visual analysis of human motion. Chinese Journal of Computers, 2002,25(3):353-360 (in Chinese with English abstract).
    [3] Quattoni A, Wang S, Morency LP, Collins M, Darrell T. Hidden conditional random fields. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007,29(10):1848-1852.
    [4] He X, Cai D, Yan S, Zhang H. Neighborhood preserving embedding. In: Proc. of the IEEE Int'l Conf. on Computer Vision. 2005, 2:1208-1213.
    [5] Efros A, Berg A, Mori G, Malik J. Recognizing action at a distance. In: Proc. of the IEEE Int'l Conf. on Computer Vision. 2003, 2:726-733.
    [6] Carlsson S, Sullivan J. Action recognition by shape matching to key frames. In: Proc. of the IEEE CS Workshop on Models Versus Exemplars in Computer Vision. 2002. 263-270.
    [7] Gorelick L, Blank M, Shechtman E, Irani M, Basri R. Action as space-time shapes. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007,29(12):2247-2253.
    [8] Nguyen N, Phung D, Venkatesh S, Bui H. Learning and detecting activities from movement trajectories using the hierarchical hidden Markov models. In: Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005.
    [9] Huang FY, Xu GY. Viewpoint independent action recognition. Journal of Software, 2008,19(7):1623-1634 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/19/1623.htm
    [10] Ahmad M, Lee SW. HMM-Based human action recognition using multiview image sequences. In: Proc. of the IEEE Int'l Conf. on Pattern Recognition. 2006,1:263-266.
    [11] Sminchisescu C, Kanaujia A, Li Z, Metaxas D. Conditional visual tracking in kernel space. In: Advances in Neural Information Processing Systems. 2006.
    [12] Elgammal A, Lee CS. Inferring 3D body pose from silhouettes using activity manifold learning. In: Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition. 2004,2:681-688.
    [13] Roweis S, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000,290(5500):2323-2326.
    [14] Tenenbaum JB, Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(5500):2319-2323.
    [15] Bobick A, Davis J. The recognition of human movement using temporal templates. IEEE Trans. on Pattern Recognition and Machine Intelligence, 2001,23(3):257-267.
    [16] Weinland D, Ronfard R, Boyer E. Weinland D, Ronfard R, Boyer E. Free viewpoint action recognition using motion history volumes. Computer Vision and Image Understanding, 2006,104(2):249-257.
    [17] Mokhber A, Achard C, Milgram M. Recognition of human behavior by space-time silhouette characterization. Pattern Recognition Letters, 2008,29(1):81-89.
    [18] Kapoor A, Picard R. A real-time head nod and shake detector. In: Proc. of the Workshop on Perspective User Interfaces. 2001.
    [19] Sminchisescu C, Kanaujia A, Li Z, Metaxas D. Conditional models for contextual human motion recognition. In: Proc. of the 10th IEEE Int'l Conf. on Computer Vision, Vol.2. 2005. 1808-1815.
    [20] Torralba A, Murphy K, Freeman W. Contextual models for object detection using boosted random fields. In: Advances in Neural Information Processing Systems. 2004.
    [21] Wang L, Suter D. Recognizing human activities from silhouettes: Motion subspace and factorial discriminative graphical model. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2007. 1-8. 附中文参考文献:
    [2] 王亮,胡卫明,谭铁牛.人运动的视觉分析综述.计算机学报,2002,25(3):353-360.
    [9] 黄飞跃,徐光佑.视角无关的动作识别.软件学报,2008,19(7):1623-1634. http://www.jos.org.cn/1000-9825/19/1623.htm
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘法旺,贾云得.基于流形学习与隐条件随机场的人体动作识别.软件学报,2008,19(zk):69-77

复制
分享
文章指标
  • 点击次数:4573
  • 下载次数: 8158
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2008-05-01
  • 最后修改日期:2008-11-25
文章二维码
您是第19754468位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号