基于边界平滑检测的虚假图像盲识别算法
作者:
基金项目:

Supported by the National Basic Research Program of China under Grant No.2006CB303104 (国家重点基础研究发展计划(973)


Exposing Digital Forgeries by Detecting Traces of Smoothing
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    凭借着高性能的计算机、高分辨率的数码照相机以及成熟的照片编辑软件,用户可以轻松地按照自己的意愿来修改数字图像.由于成功的伪造不会在图像上留下篡改的视觉痕迹,也就不会被人眼所感知,但是也会不可避免地留下一些修改过的电子痕迹.大多数的伪造会在篡改图像之后采用边缘和区域平滑的方法来使图像显得完整、统一.描述了图像在修改前后的区别,之后将引入"不和谐点"的概念,然后提出了一种在图像的任意地方自动检测平滑区域的方法,以表明可能存在的篡改.该技术方法不需要嵌入任何信息.

    Abstract:

    With powerful computer, high-resolution digital cameras, and sophisticated photo editing software, users can easily manipulate and alter digital images as they wish. Although good forgeries may not be perceptible by human eyes because no visual clues of tampering are left, they may leave some traces of digital tampering that can not be avoided in the media during tampering process. Most digital forgeries employ edge and region smoothing after the contents are manipulated or altered. This paper describes how smoothing introduces disharmony between authentic regions and tampering regions, and then presents a method to automatically detect smoothing regions at any part of an image that indicate possible tampering. The technique works well without any embedded information such as digital watermark.

    参考文献
    [1] Cox I, Miller M, Bloom J. Digital Watermarking. Los Altos: Morgan Kaufmann Publishers, 2001.
    [2] Farid H. Detecting digital forgeries using bispectral analysis. Technical Report, AIM-1657, MIT AI Memo, 1999.
    [3] Fridrich J, Soukal D, Lukas J. Detection of copy-move forgery in digital images. In: Proc. of the Digital Forensic Research Workshop. 2003.
    [4] Gonzalez RC, Woods RE. Digital Image Processing. 2nd ed., Addison-Wesley Publishing Company, 2002.
    [5] Hsiao D, Pei S. Detecting digital tampering by blur estimation. In: Proc. of the 1st Int'l Workshop on Systematic Approaches to Digital Forensic Engineering. 2005.
    [6] Johnson M, Farid H. Exposing digital forgeries through chromatic aberration. In: Proc. of the MM&Sec06. 2006.
    [7] Li X. Blind image quality assessment. In: Proc. of the 2002 Int'l Conf. on Image Processing. 2002,1:449-452.
    [8] Li X, Orchard M. Edge directed prediction for lossless compression of natural images. IEEE Trans. on Image Processing, 2001, 10(6):813-817.
    [9] Lim J. Two-Dimensional Signal and Image Processing. Prentice Hall, 1990.
    [10] Luo W, Huang J, Qiu Q. Robust detection of region duplication forgery in digital image. In: Proc. of the 18th Int'l Conf. on Pattern Recognition. 2006.
    [11] Lyu S, Farid H. Higher-Order wavelet statistics and their application to digital forensics. In: Proc. of the IEEE Workshop on Statistical Analysis in Computer Vision. 2003.
    [12] Popescu A, Farid H. Statistical tools for digital forensics. In: Proc. of the 6th Int'l Workshop on Information Hiding. 2004.
    [13] Popescu A, Farid H. Exposing digital forgeries by detecting traces of re-sampling. IEEE Trans. on Signal Processing, 2005, 53(2):758-767.
    [14] Popescu AC FH. Exposing digital forgeries in color filter array interpolated images. IEEE Trans. on Signal Processing, 2005, 53(10):3948-3959.
    相似文献
    引证文献
引用本文

陈 英,赵 鹏,王瑀屏.基于边界平滑检测的虚假图像盲识别算法.软件学报,2008,19(zk):59-68

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-05-01
  • 最后修改日期:2008-11-25
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号