基于奇异点邻近结构的快速指纹识别
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60875018, 60575007 (国家自然科学基金); the Chinese Academy of Sciences Hundred Talents Program (中国科学院百人计划)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    将指纹识别中分类和匹配过程相结合,提出了一种包含奇异点周边的方向场和细节点等特征的奇异点邻近结构.该结构利用奇异点周边识别信息集中的特点,大大减少了匹配的计算量,并能够同时作为指纹分类和比对的特征,直接应用于指纹的连续分类和快速匹配过程,实现对大容量指纹数据库的快速识别.在NIST和FVC2004数据库上的测试结果显示,该算法在保证自动指纹识别系统(automatic fingerprint identification system,简称AFIS)的识别准确性的同时,还使得指纹在线识别系统的1:N辨识速度有显著的提高.

    Abstract:

    Combining the classification and matching of fingerprints together, a neighborhood structure is proposed in this paper, which includes the orientation field and minutia around the reference singular point. This structure has the advantage that the identification information is centralized around the singular point, and can dramatically decrease the calculation of matching. It can also be directly used as pattern in both the continuous classification and the fast matching of fingerprints, and carry out the fast identification of the large scale database. Experimental results on NIST and FVC2004 databases show that this algorithm can highly speed up the matching of large scale fingerprint database with a preferable performance, and it can be used in one-to-many matching of on-line fingerprint identification system.

    参考文献
    [1] Maltoni D, Maio D, Jain AK, Prabhakar S. Handbook of Fingerprint Recognition. New York: Springer-Verlag, 2003. 173-202.
    [2] Chang JH, Fan KC. A new model for fingerprint classification by ridge distribution sequences. Pattern Recognition, 2002,35(6): 1209-1223.
    [3] Tan XJ, Bhanu B, Lin YQ. Fingerprint classification based on learned features. IEEE Trans. on Systems, Man, and Cybernetics, 2005,35(3):287-300.
    [4] Lumini A, Maio D, Maltoni D. Continuous versus exclusive classification for fingerprint retrieval. Pattern Recognition Letters, 1997,18(10):1027-1034.
    [5] Cappelli R, Maio D, Maltoni D. Combining fingerprint classifiers. In: Josef K, Fabio R, eds. Proc. of the Multiple Classifier Systems. Berlin: Springer-Verlag, 2000. 351-361.
    [6] Boer JD, Bazen AM, Gerez SH. Indexing fingerprint database based on multiple features. In: Proc. of the ProRISC Workshop on Circuits, Systems and Signal Processing. 2001. http://utelnt.el.utwente.nl/links/gerez/publications/pslist.html
    [7] Bhanu B, Tan XJ. Fingerprint indexing based on novel features of minutiae triplets. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(5):616-622.
    [8] Li J, Wang H. Fingerprint indexing based on symmetrical measurement. In: Tang YY, Wang SP, Lorette G, Yeung DS, Yan H, eds. Proc. of the 18th Int’l Conf. on Pattern Recognition. Washington: IEEE Computer Society, 2006. 1038-1041.
    [9] NIST Special Database 4, Fingerprint Database. 1992. http://www.nist.gov/srd/nistsd4.htm
    [10] Fingerprint verification competition. 2004. http://bias.csr.unibo.it/fvc2004/
    [11] Hong L, Wan YF. Jain AK. Fingerprint image enhancement: Algorithm and performance evaluation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998,20(8):777-789.
    [12] Luo XP, Tian J. Image enhancement and minutia matching algorithms in automated fingerprint identification system. Journal of Software, 2002,13(5):946-956 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/13/946.pdf
    [13] Kawagoe M, Tojo A. Fingerprint pattern classification. Pattern Recognition, 1984,17(3):295-303.
    [14] Liu MH, Jiang XD, Kot AC. Reference point detection for fingerprint recognition. In: Zhang D, Jian AK, eds. Biometric Authentication. Berlin: Springer-Verlag, 2004. 272-279.
    [15] Lee D, Choi K, Kim J. A robust fingerprint matching algorithm using local alignment. In: Kasturi R, Laurendeau D, Suen C, eds, Proc. of the 16th Int’l Conf. on Pattern Recognition, Vol.3. Washington: IEEE Computer Society, 2002. 803-806.
    [16] Chen H, Tian J. A fingerprint matching algorithm with registration pattern inspection. Journal of Software, 2005,16(6):1046-1053 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/16/1046.htm
    [17] Jiang XD, Yau WY. Fingerprint minutiae matching based on the local and global structures, In: Sanfeliu A, Villanueva JJ, Vanrell M, Alquezar R, Crowley J, Shirai Y. eds. Proc. of the 15th Int’l Conf. on Pattern Recognition. Washington: IEEE Computer Society, 2000. 1038-1041.
    [18] Zhang Q, Yan H. Fingerprint classification based on extraction and analysis of singularities and pseudo ridges. Pattern Recognition, 2004,37(11):2233-2243.
    [19] Yao Y, Frasconi P, Pontil M. Fingerprint classification with combination of support vector machines. In: Josef B, Fabrizio S, eds, Audio- and Video-Based Biometric Person Authentication. Berlin: Springer-Verlag, 2001. 253-25.
    [20] Park CH, Park H, Fingerprint classification using fast fourier transform and nonlinear discriminant analysis. Pattern Recognition, 2005,38(4):495-503.
    [21] Cappelli R, Maio D, Maltoni D. Fingerprint classification based on multi-space KL. In: Proc. of the Workshop on Automatic Identification Advanced Technologies. 1999. 117-120. http://biolab.csr.unibo.it/Bibliography.asp
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

时 鹏,田 捷,苏 琪,杨 鑫.基于奇异点邻近结构的快速指纹识别.软件学报,2008,19(12):3134-3146

复制
分享
文章指标
  • 点击次数:4436
  • 下载次数: 8665
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2007-02-06
  • 最后修改日期:2007-08-24
文章二维码
您是第19784061位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号