一种求解最大团问题的并行交叉熵算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Research Foundation for the Doctoral Program of Ministry of Education of China (国家教育部博士点基金); the Natural Science Foundation of Jiangsu Province of China under Grant No.BK2003030 (江苏省自然科学基金)


Leader-Based Parallel Cross Entropy Algorithm for Maximum Clique Problem
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高交叉熵算法求解最大团问题(maximum clique problem,MCP)的性能,提出一种领导者-跟随者协作求解的并行策略来实现交叉熵算法,从而达到减少计算时间和保障解的质量这两方面的平衡.算法中领导者活跃在并行处理器之间采集数据,并根据当前获得信息对跟随者作出决策;受控的跟随者则主要根据领导者的决策信息自适应地调整搜索空间,完成各自的集团产生任务.采用了OpenMPI在MIMD平台上实现了该算法,并应用到MCP基准测试问题上.加速比和效率分析结果表明,算法具有很好的加速比和效率.而与其它几种当前最好的启发式算法相比,结果表明算法相对于基于种群的启发式算法有一定的性能改善.

    Abstract:

    The Cross Entropy method is a new search strategy for combinatorial optimization problems. However, it usually needs considerable computational time to achieve good solution quality. This paper introduces a Cross Entropy algorithm for solving maximum clique problem (MCP). To make the Cross Entropy algorithm faster, this paper proposes a leader-based cooperative parallel strategy. Unlike the widely used coarse-grained parallel strategy, our method has a leader, who can move around the parallel processors and collect data actively, and several followers whose main job are simply to sample the cliques guided by the leader via transition matrix. To evaluate the performance of the algorithm, this paper implements the algorithm using OpenMPI on MIMD architecture, and applies it on the MCP benchmark problems. The speedup and efficiency are analyzed, and the results are compared with those obtained by four other best heuristic algorithms. The results show that the presented method has achieved good performance among those best population-based heuristics.

    参考文献
    相似文献
    引证文献
引用本文

吕 强,柏战华,夏晓燕.一种求解最大团问题的并行交叉熵算法.软件学报,2008,19(11):2899-2907

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2007-08-02
  • 最后修改日期:2007-10-09
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号