半监督典型相关分析算法
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60505004, 60875030 (国家自然科学基金); the Natural Science Foundation of Jiangsu Province of China under Grant No.BK2006521 (江苏省自然科学基金)


Semi-Supervised Canonical Correlation Analysis Algorithm
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在典型相关分析算法(canonical correlation analysis,简称CCA)的基础上,通过引入以成对约束形式给出的监督信息,提出了一种半监督的典型相关分析算法(Semi-CCA).在此算法中,除了考虑大量的无标号样本以外,还考虑成对约束信息,即已知两样本属于同一类(正约束)或不属于同一类(负约束),同时验证了两者的相对重要性.在人工数据集、多特征手写体数据集和人脸数据集(Yale 和AR)上的实验结果表明,Semi-CCA能够有效地利用少量的监督信息来提高分类性能.

    Abstract:

    In this paper, a semi-supervised canonical correlation analysis algorithm called Semi-CCA is developed, which uses supervision information in the form of pair-wise constraints in canonical correlation analysis (CCA). In this setting, besides abundant unlabeled data examples, the domain knowledge in the form of pair-wise constraints which specify whether a pair of data examples belongs to the same class (must-link constraints) or not (cannot-link constraints) is also available. Meanwhile, the relative importance of must-link constraints and cannot-link constraints is validated. Experimental results on the artificial dataset, multiple feature database and facial database including Yale and AR show that the proposed Semi-CCA can effectively enhance the classifier performance by using only a small amount of supervision information.

    参考文献
    [1] Borga M, Knutsson H. Canonical correlation analysis in early vision Processing. In: Proc. of the 9th European Symp. on Artificial Neural Networks. 2001. 309-314.
    [2] Gao HB, Hong WX, Cui JX, Xu YH. Optimization of principal component analysis in feature extraction. In: Proc. of the IEEE Int’l Conf. on Mechatronics and Automation. 2007. 3128-3132.
    [3] Zheng WM, Zhou XY, Zou CR, Zhao L. Facial expression recognition using kernel canonical correlation analysis (KCCA). IEEE Trans. on Neural Networks, 2006,17(1):233-238.
    [4] Loog M, B. van Ginneken B, Duin RPW. Dimensionality reduction by canonical contextual correlation projections. In: Proc. of the European Conf. on Computer Vision. 2004. 562-573.
    [5] Hel-Or Y. The canonical correlations of color images and their use for demosaicing. Technical Report, HPL-2003-164(R1), HP Labs., 2004.
    [6] Friman O, Carlsson J, Lundberg P, Borga M, Knutsson H. Detection of neural activity in functional MRI using canonical correlation analysis. Magnetic Resonance in Medicine, 2001,45(2):323-330.
    [7] Knutsson H, Borga M, Landelius T. Learning multidimensional signal processing. In: Proc. of the 14th Int’l Conf. on Pattern Recognition. 1998. 1416-1420.
    [8] Nielsen AA. Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data. IEEE Trans. on Image Processing, 2002,11(3):293-305.
    [9] Vlassis N, Motomura Y, Kr?se B. Supervised linear feature extraction for mobile robot localization. In: Proc. of the 2000 IEEE Int’l Conf. on Robotics and Automation. 2000. 2979-2984.
    [10] Abraham B, Merola G. Dimensionality reductions approach to multivariate prediction. Computational Statistics and Data Analysis, 2005,48(1):5-16.
    [11] Li YY, Shawe-Taylor J. Using KCCA for Japanese-English cross-language information retrieval and document classification. Journal of Intelligent Information Systems, 2006,27(2):117-133.
    [12] Vinokourov A, Shawe-Taylor J, Cristianini N. Inferring a semantic representation of text via cross-language correlation analysis. In: Neural Information Processing Systems. 2002. 1473-1480.
    [13] Zhang DQ, Zhou ZH, Chen SC. Semi-Supervised dimensionality reduction. In: Proc. of the 7th SIAM Int’l Conf. on Data Mining. 2007. 629-634.
    [14] Zhu XJ. Semi-Supervised learning literature survey. Technical Report, 1530, Madison: Department of Computer Sciences, University of Wisconsin, 2005.
    [15] Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 2000,39(1):1-3.
    [16] Zhou ZH, Li M. Semi-Supervised regression with co-training. In: Proc. of the 19th Int’l Joint Conf. on Artificial Intelligence. 2005. 908-913.
    [17] El-Yaniv R, Pechyony D, Vapnik V. Large margin vs. large volume in transductive learning. Machine Learning, 2008,72(3): 173-188.
    [18] Brefeld U, G?rtner T, Scheffer T, Wrobel S. Efficient co-regularized least squares regression. In: Proc. of the Int’l Conf. on Machine Learning. 2006. 137-144.
    [19] Basu S, Bilenko M, Mooney RJ. A probabilistic framework for semi-supervised clustering. In: Proc. of the 10th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. 2004. 59-68.
    [20] Kulis B, Basu S, Dhillon I, Mooney RJ. Semi-Supervised graph clustering: A kernel approach. In: Proc. of the Int’l Conf. on Machine Learning. 2005. 532-537.
    [21] Blum A, Mitchell T. Combining labeled and unlabeled data with co-training. In: Peter B, Yishay M, eds. Proc. of the 11th Annual Conf. on Computational Learning Theory. Madison: ACM Press, 1998. 92-100.
    [22] Zhang T, Ando RK. Analysis of spectral kernel design based semi-supervised learning. In: Neural Information Processing Systems. Cambridge: MIT Press, 2006. 1601-1608.
    [23] Cai D, He XF, Han JW. Semi-Supervised discriminant analysis. In: Proc. of the IEEE Int’l Conf. on Computer Vision. Rio de Janeiro, 2007.
    [24] Sugiyama M, Ide T, Nakajima S, Sese J. Semi-Supervise local fisher discriminant analysis for dimensionality reduction. In: Proc. of the Pacific-Asia Conf. on Knowledge Discovery and Data Mining. 2008. 333-344.
    [25] Zhou ZH, Zhan DC, Yang Q. Semi-Supervised learning with very few labeled training examples. In: Proc. of the 22nd AAAI Conf. on Artificial Intelligence. 2007. 675-680.
    [26] Sun QS, Zeng SG, Liu Y, Heng PA, Xia DS. A new method of feature fusion and its application in image recognition. Pattern Recognition, 2005,38(12):2437-2448.
    [27] Vía J, Santamaría I, Pérez J. A learning algorithm for adaptive canonical correlation analysis of several data sets. Neural Networks, 2007,20(1):139-152.
    [28] Melzer T, Reiter M, Bischof H. Appearance models based on kernel canonical correlation analysis. Pattern Recognition, 2003,36(9):1961-1971.
    相似文献
    引证文献
引用本文

彭 岩,张道强.半监督典型相关分析算法.软件学报,2008,19(11):2822-2832

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-03-01
  • 最后修改日期:2008-08-26
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号