基于HMM-FNN模型的复杂动态手势识别
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Basic Research Program of China under Grant No.2002CB312103 (国家重点基础研究发展计划(973)); the National Natural Science Foundation of China under Grant Nos.60673188, 60605018 (国家自然科学基金); the National High-Tech Research and Development Plan of China under Grant No.2006AA01Z328 (国家高技术研究发展计划(863))


Recognition of Complex Dynamic Gesture Based on HMM-FNN Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    复杂动态手势识别是利用视频手势进行人机交互的关键问题.提出一种HMM-FNN模型结构.它整合了隐马尔可夫模型对时序数据的建模能力与模糊神经网络的模糊规则构建与推理能力,并将其应用到复杂动态手势的识别中.复杂动态手势具备两大特点:运动特征的可分解性与定义描述的模糊性.针对这两种特性,复杂手势被分解为手形变化、2D平面运动与Z轴方向运动3个子部分,分别利用HMM进行建模,HMM模型对观察子序列的似然概率被作为FNN的模糊隶属度,通过模糊规则推理,最终得到手势的分类类别.HMM-FNN方法将高维手势特征分解为低

    Abstract:

    Recognition of complex dynamic gesture is a key issue for visual gesture-based human-computer interaction. In this paper, an HMM-FNN model is proposed for gesture recognition, which combines ability of HMM model for temporal data modeling with that of fuzzy neural network for fuzzy rule modeling and fuzzy inference. Complex dynamic gesture has two important properties: Its motion can be decomposed and usually being defined in a fuzzy way. By HMM-FNN, complex gesture is firstly decomposed into three components: Posture changing, movement in 2D plane and movement in Z-axis direction, each of which is modeled by HMM. The likelihood of each HMM to observation sequence is considered as membership value of FNN, and gesture is classified through fuzzy inference of FNN. In this proposed method, high-dimensional gesture feature is transformed into several low-dimensional features, as a result, computational complexity is reduced. Furthermore, human's experience or prior knowledge can be used to build and optimize model structure. Experimental results show that the proposed method is an effective method for recognition of complex dynamic gesture, and is superior to conventional HMM method.

    参考文献
    相似文献
    引证文献
引用本文

王西颖,戴国忠,张习文,张凤军.基于HMM-FNN模型的复杂动态手势识别.软件学报,2008,19(9):2302-2312

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2006-11-14
  • 最后修改日期:2007-04-18
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号