无线传感器网络中自适应数据存取
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant No.90612007 (国家自然科学基金); the National Basic Research Program of China under Grant No.2007CB310806 (国家重点基础研究发展计划(973))


Adaptive Information Brokerage in Wireless Sensor Networks
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    数据存取,也称信息中介,是指生产者(传感器节点)将产生的感知数据按照某种策略存放在特定的位置上,而消费者(基站、用户、传感器节点)将查询请求按照对应策略路由到数据存放位置获得感兴趣的数据.利用数据速率和地理位置信息来减少网状拓扑结构传感器网络中数据存取的代价.首先,依据生产者和消费者的关系建模为"一对一"(一个生产者,一个消费者)、"多对一"(多个生产者,一个消费者)、"多对多"(多个生产者,多个消费者)3种模型来对存取代价进行分析.其次,基于上述模型,提出利用数据速率和地理位置来确定数据存放位置的自适应

    Abstract:

    Information brokerage in wireless sensor networks involves producers (such as sensor nodes) storing in storage positions a large amount of data that they have collected and consumers (e.g. base stations, users, and nodes) retrieving that information. In this paper, first, the data storage problem is formalized into a one-to-one (one producer and one consumer) model, a many-to-one (m producers and one consumer) model, and a many-to-many (m producers and n consumers) model with the goal of minimizing the total energy consumption. Second, based on the above models, two algorithms are proposed to determine the storage positions based on data rates of producers, query rates of consumers, and transmission scheme of information brokerage. The optimal data storage (ODS) scheme, a greedy algorithm, produces the global optimal data storage positions and the near-optimal data storage (NDS) scheme, an approximate algorithm, can greatly reduce the computational overhead while achieving local optimal positions. Both ODS and NDS are able to adjust the storage positions adaptively to minimize energy consumption that includes the costs of storing and querying the data. Simulation results show that NDS not only provides substantial cost benefits but also performs as effective and efficient as ODS in over 70% of the tested cases.

    参考文献
    [1] Li JZ, Li JB, Shi SF. Concepts, issues and advance of sensor networks and data management of sensor networks. Journal of Software, 2003,14(10):1717-1727 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/14/1717.htm
    [2] Li GL, Gao H. A load balance data storage method based on ring for sensor networks. Journal of Software, 2007,18(5):1173-1185 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/18/1173.htm
    [3] Shenker S, Ratnasamy S, Karp B, Govindan R, Estrin D. Data-Centric storage in sensornets. ACM SIGCOMM Computer Communications Review, 2003,33(1):137-142.
    [4] Ganesan D, Greenstein B, Estrin D, Heidemann J, Govindan R. Multi-Resolution storage and search in sensor networks. ACM Trans. on Storage, 2005,1(3):277-315.
    [5] Madden S, Franklin M, Hellerstein J, Hong W. Tinydb: An acquisitional query processing system for sensor networks. ACM Trans. on Database Systems, 2005,30(1):122-173.
    [6] Intanagonwiwat C, Govindan R, Estrin D, Heidemann JS, Silva F. Directed diffusion for wireless sensor networking. IEEE/ACM Trans. on Networking, 2003,11(1):2-16.
    [7] Gil TM, Madden S. Scoop: An adaptive indexing scheme for stored data in sensor networks. In: Dogac A, Ozsu T, Sellis T, eds. Proc. of the 23rd Int'l Conf. on Data Engineering. Istanbul: IEEE Computer Society, 2007. 89-102.
    [8] Sheng B, Li Q, Mao W. Data storage placement in sensor networks. In: Conti M, Sivakumar R, eds. Proc. of the 7th ACM Int'l Symp. on Mobile Ad Hoc Networking and Computing. Los Angeles: ACM Press, 2006. 344-355.
    [9] Ratnasamy S, Karp B, Yin L, Yu F, Estrin D, Govindan R, Shenker S. Ght: A geographic hash table for data-centric storage. In: Reghavendrv CS, ed. Proc. of the 1st ACM Int'l Workshop on Wireless Sensor Networks and Applications. New York: ACM Press, 2002. 78-87.
    [10] Li X, Kim Y, Govindan R, Hong W. Multi-Dimensional range queries in sensor networks. In: Ian A, Deborah E, eds. Proc. of the 1st ACM Conf. on Embedded Networked Sensor Systems. New York: ACM Press, 2003. 63-75.
    [11] Greenstein B, Estrin D, Govindan R, Ratnasamy S, Shenker S. Difs: A distributed index for features in sensor networks. In: Erdal C, Taieb Z, Eylem E, eds. Proc. of the 1st IEEE Int'l Workshop on Sensor Network Protocols and Applications. Washington: IEEE Computer Society, 2003. 163-173.
    [12] Ganesan D, Greenstein B, Perelyubskiy D, Estrin D, Heidemann J. An evaluation of multi-resolution storage for sensor networks. In: Ian A, Deborah E, eds. Proc. of the 1st ACM Conf. on Embedded Networked Sensor Systems. New York: ACM Press, 2003. 89-102.
    [13] Braginsky D, Estrin D. Rumor routing algorithm for sensor networks. In: Raghavendra CS, ed. Proc. of the 1st Workshop on Sensor Networks and Applications. Atlanta: ACM Press, 2002. 22-31.
    [14] Sarkar R, Zhu X, Gao J. Double rulings for information brokerage in sensor networks. In: Petrioli C, Ramjee R, eds. Proc. of the 12th Int'l Annual Conf. on Mobile Computing and Networking. Los Angeles: ACM Press, 2006. 286-297.
    [15] Kapadia S, Krishnamachari B. Comparative analysis of push pull query strategies for wireless sensor networks. In: Gibbons P, ed. Proc. of the Int'l Conf. Distributed Computing in Sensor Systems. Berlin: Springer-Verlag, 2006. 185-201.
    [16] Wang C, Xiao L. Locating sensors in concave areas. In: Azcorra A, Touch J, Zhang ZL, eds. Proc. of the IEEE INFOCOM. New York: IEEE Communications Society, 2006. 1-12.
    [17] Har-Peled S, Mazumdar S. Coresets for k-means and k-median clustering and their applications. In: Babai L, ed. Proc. of the 36th Annual ACM Symp. on Theory of Computing. New York: ACM Press, 2004. 291-300.
    [18] Karp B, Kung H. Greedy perimeter stateless routing for wireless networks. In: Pickholtz R, ed. Proc. of the 6th Annual ACM/IEEE Int'l Conf. on Mobile Computing and Networking. Boston: ACM Press, 2000. 243-254.
    [19] Silberstein A, Braynard R, Yang J. Constraint-Chaining: On energy-efficient continuous monitoring in sensor networks. In: Chaudhuri S, ed. Proc. of the 25th ACM Int'l Conf. on Management of Data. New York: ACM Press, 2006. 157-168.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蔚赵春,周水庚,肖 斌.无线传感器网络中自适应数据存取.软件学报,2008,19(1):103-115

复制
分享
文章指标
  • 点击次数:5822
  • 下载次数: 6781
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2007-07-23
  • 最后修改日期:2007-10-12
文章二维码
您是第19926131位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号