基于层次划分的最佳聚类数确定方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant No.10771176 (国家自然科学基金); the National 985 Project of China under Grant No.0000-X07204 (985工程二期平台基金); the Scientific Research Foundation of Xiamen University of China under Grant No.0


A Hierarchical Method for Determining the Number of Clusters
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    确定数据集的聚类数目是聚类分析中一项基础性的难题.常用的trail-and-error方法通常依赖于特定的聚类算法,且在大型数据集上计算效率欠佳.提出一种基于层次思想的计算方法,不需要对数据集进行反复聚类,它首先扫描数据集获得CF(clustering feature,聚类特征)统计值,然后自底向上地生成不同层次的数据集划分,增量地构建一条关于不同层次划分的聚类质量曲线;曲线极值点所对应的划分用于估计最佳的聚类数目.另外,还提出一种新的聚类有效性指标用于衡量不同划分的聚类质量.该指标着重于簇的几何结构且独

    Abstract:

    A fundamental and difficult problem in cluster analysis is the determination of the "true" number of clusters in a dataset. The common trail-and-error method generally depends on certain clustering algorithms and is inefficient when processing large datasets. In this paper, a hierarchical method is proposed to get rid of repeatedly clustering on large datasets. The method firstly obtains the CF (clustering feature) via scanning the dataset and agglomerative generates the hierarchical partitions of dataset, then a curve of the clustering quality w.r.t the varying partitions is incrementally constructed. The partitions corresponding to the extremum of the curve is used to estimate the number of clusters finally. A new validity index is also presented to quantify the clustering quality, which is independent of clustering algorithm and emphasis on the geometric features of clusters, handling efficiently the noisy data and arbitrary shaped clusters. Experimental results on both real world and synthesis datasets demonstrate that the new method outperforms the recently published approaches, while the efficiency is significantly improved.

    参考文献
    相似文献
    引证文献
引用本文

陈黎飞,姜青山,王声瑞.基于层次划分的最佳聚类数确定方法.软件学报,2008,19(1):62-72

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2007-04-01
  • 最后修改日期:2007-10-09
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号