挖掘多关系关联规则
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.70471006, 70621061, 60496325, 60573092 (国家自然科学基金)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    关联规则的挖掘是数据挖掘中的一项重要和基础的技术,已进行了多方面的深入研究,有着广泛的应用.传统数据挖掘算法是针对单表数据进行处理的,在应用于多关系数据挖掘时存在诸多问题.对多关系关联规则的挖掘问题进行了重新定义和总结.提出了多关系关联规则挖掘的一个框架,并对已有算法进行了分类.然后对各类代表性算法进行了描述、分析和对比,对尚存在的问题进行了分析和总结.最后,对该领域未来的研究工作提出了建议.

    Abstract:

    Association rule mining is one of the most important and basic technique in data mining,which has been studied extensively and has a wide range of applications.However,as traditional data mining algorithms usually only focus on analyzing data organized in single table,applying these algorithms in multi-relational data environment will result in many problems.This paper summarizes these problems,proposes a framework for the mining of multi-relational association rule,and gives a definition of the mining task.After classifying the existing work into two categories,it describes the main techniques used in several typical algorithms,and it also makes comparison and analysis among them.Finally,it points out some issues unsolved and some future further research work in this area.

    参考文献
    [1]Domingos P.Prospects and challenges for multi-relational data mining.ACM SIGKDD Explorations Newsletter,2003,5(1):80-83.
    [2]Agrawal R,Imilienski T,Swami A.Mining association rules between sets of items in large datasets.In:Buneman P,Jajodia S,eds.Proc.of the 1996 ACM SIGMOD Int'l Conf.on Management of Data.New York:ACM Press,1993.207-216.
    [3]Agrawal R,Srikant R.Fast algorithm for mining association rules.In:Bocca JB,Jarke M,Zaniolo Z,eds.Proc.of the 20th Int'l Conf.on Very Large Data Bases.Burlington:Morgan Kaufmann Publishers,1994.487-499.
    [4]Mannila H,Toivonen H,Verkamo AI.Efficient algorithms for discovering association rules.In:Fayyad UM,Uthurusamy R,eds.Proc.of the 1994 AAAI Workshop Knowledge Discovery in Databases (KDD'94).AAAI Press,1994.181-192.
    [5]Savasere A,Omiecinski E,Navathe S.An efficient algorithm for mining association rules in large databases.In:Dayal U,Gray PMD,Nishio S,eds.Proc.of the 21st Int'l Conf.on VLDB.Burlington:Morgan Kaufmann Publishers,1995.432-443.
    [6]Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation.In:Chen WD,Naughton JF,Bernstein PA,eds.Proc.of the 2000 ACM SIGMOD Int'l Conf.on Management of Data.New York:ACM Press,2000.1-12.
    [7]Zaki MJ,Parthasarathy S,Ogihara M,Li W.New algorithms for fast discovery of association rules.In:Heckerman D,Mannila H,Pregibon D,Uthurusamy R,eds.Proc.of the 3rd Int'l Conf.on Knowledge Discovery and Data Mining.AAAI Press,1997.283-286.
    [8]Grahne G,Zhu J.Efficiently using prefix-trees in mining frequent itemsets.In:Goethals B,Zaki MJ,eds.Proc.of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI 2003),CEUR Workshop Proc.,Vol-90.2003.http://CEUR-WS.org/ Vol-90/
    [9]Pasquier N,Bastide Y,Taouil R,Lakhal L.Discovering frequent closed itemsets for association rules.In:Beeri C,Buneman P,eds.Proc.of the 7th Int'l Conf.Database Theory (ICDT'99).LNCS 1540,Berlin:Springer-Verlag,1999.398-416.
    [10]Zaki MJ,Hsiao CJ.CHARM:An efficient algorithm for closed association rule mining.Technical Report,TR99-10,Department of Computer Science,Rensselaer Polytechnic Institute,1999.
    [11]Pei J,Han J,Mao R.CLOSET:An efficient logarithm for mining frequent closed itemsets.In:Gunopulos D,Rastogi R,eds.Proc.of the 2000 ACM SIGMOD Int'l Workshop Data Mining and Knowledge Discovery (DMKD 2000).2000.11-20.
    [12]Pan F,Cong G,Tung AKH,Yang J,Zaki MJ.CARPENTER:Finding closed patterns in long biological datasets.In:Getoor L,Senator TE,Domingos P,Faloutsos C,eds.Proc.of the 9th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2003.637-642.
    [13]Liu HY,Han J,Xin D,Shao Z.Top-Down mining of interesting patterns from very high dimensional data.In:Liu L,Reuter A,Whang KY,Zhang JJ,eds.Proc.of the 22nd IEEE Int'l Conf.on Data Engineering (ICDE 2006).Washington:IEEE Computer Society,2006.114-119.
    [14]Getoor L.Multi-Relational data mining using probabilistic relational models:Research summary.In:Knobbe AJ,van der Wallen DMG,eds.Proc.of the 1st Workshop in Multi-Relational Data Mining.2001.6-17.http://mrdm.dantec.nl/procmrdm.pdf.
    [15]Dzeroski S,LAvrac N.Relational Data Mining.New York:Springer-Verlag,2001.
    [16]Raghu R,Gehrke J.Database Management Systems.2nd ed.,New York:McGraw-Hill,2000.97-99.
    [17]Kramer S,Lavrac N,Flach P.Propositonalization approaches to relational data mining.In:Dzeroski S,Lavrac N,eds.Relational Data Mining.New York:Springer-Verlag,2001.262-291.
    [18]Dehaspe L,de Raedt L.Mining association rules in multiple relations.In:Dzeroski S,Lavrac N,eds.Proc.of the 7th Int'l Workshop on Inductive Logic Programming.LNAI 1297,Berlin:Springer-Verlag,1997.125-132.
    [19]Dehape L.Frequent pattern discovery in first-order logic[Ph.D.Thesis].Belgium:Katholieke Universiteit Leuven,1998.
    [20]Nijssen S,Kok J.Faster association rules for multiple relations.In:Nebel B,ed.Proc.of the 17th Int'l Joint Conf.on Artificial Intelligence (IJCAI 2001),Vol.2.2001.891-896.
    [21]Dehaspe L,Toivonen H.Discovery of frequent datalog patterns.Data Mining and Knowledge Discovery,1999,3(1):7-36.
    [22]Dehaspe L,Toivonen H.Discovery of relational association rules.In:Dzeroski S,Lavrac N,eds.Relational Data Mining.New York:Springer-Verlag,2001.189-208.
    [23]Pijls W,Bioch JC.Mining frequent itemsets in memory-resident databases.In:Postma E,Gyssens M,eds.Proc.of the 11th Belgium-Netherlands Artificial Intelligence Conf.(BNAIC'99).Berlin:Springer-Verlag,1999.75-82.
    [24]Dehaspe L,Toivonen H,King RD.Finding frequent substructures in chemical compounds.In:Agrawal R,Stolorz P,Piatetsky-Shapiro G,eds.Proc.of the 4th Int'l Conf.on Knowledge Discovery and Data Mining.Menlo Park:AAAI Press,1998.30-36.
    [25]King RD,Karwath A,Clare A,Dehaspe L.Genome scale prediction of protein functional class from sequence using data mining.In:Simoff SJ,Za(i)ane OR,eds.Proc.of the 6th Int'l Conf.on Knowledge Discovery and Data Mining (SIGKDD).New York:ACM Press,2000.384-389.
    [26]Malerba D,Esposito F,Lisi FA,Appice A.Mining spatial association rules in census data.Research in Official Statistics,2002,5(1):19-44.
    [27]Jensen VC,Soparkar N.Frequent itemset counting across multiple tables.In:Terano T,Liu H,Chen ALP,eds.Proc.of the 4th Pacific-Asia Conf.of Knowledge Discovery and Data Mining,Current Issues and New Applications.LNCS 1805,Berlin:Springer-Verlag,2000.49-61.
    [28]Ng EKK,Fu AW,Wang K.Mining association rules from stars.In:Kumar V,Tsumoto S,eds.Proc.of the 2002 IEEE Int'l Conf.on Data Mining (ICDM 2002).Los Alamitos:IEEE Computer Society,2002.322-329.
    [29]Xu L,Xie K.A novel algorithm for frequent itemset mining in data warehouses.Journal of Zhejiang University,2006,7(2):216-224.
    [30]Shenoy P,Haritsa JR,Sudarshan S.Turbo-Charging vertical mining of large databases.In:Chen WD,Naughton JF,Bernstein PA,eds.Proc.of the 2000 ACM SIGMOD Int'l Conf.on Management of Data.New York:ACM Press,2000.22-33.
    [31]Yin X,Han J,Yang J,Yu PS.CrossMine:Efficient classification across multiple database relations.In:Ozsoyoglu M,Zdonik S,eds,Proc.of the 2004 Int'l Conf.on Data Engineering (ICDE2004).Los Alamitos:IEEE Computer Society,2004.399-411.
    [32]Liu HY,Han J,Xin D,Shao Z.Mining interesting patterns from very high dimensional data:A top-down row enumeration approach.In:Ghosh J,Lambert D,Skillicorn DB,Srivastava J,eds.Proc.of the 6th SIAM Int'l Conf.on Data Mining.Philadelphia:Society for Industrial Mathematics,2006.280-292.
    [33]Sarawagi S,Thomas S,Agrawal R.Integrating association rule mining with relational database systems:Alternatives and implications.In:Haas LM,Tiwary A,eds.Proc.of the ACM SIGMOD Conf.on Management of Data.New York:ACM Press,1998.343-354.
    [34]Ceci M,Appice A,Malerba D.Mr-SBC:A multi-relational naive Bayes classifier.In:Lavrac N,Gamberger D,Todorovski L,Blockeel H,eds.Proc.of the Knowledge Discovery in Databases PKDD 2003.LNAI 2838,Berlin:Springer-Verlag,2003.95-106.
    相似文献
引用本文

何军,刘红岩,杜小勇.挖掘多关系关联规则.软件学报,2007,18(11):2752-2765

复制
相关视频

分享
文章指标
  • 点击次数:8443
  • 下载次数: 11948
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2006-11-11
  • 最后修改日期:2007-03-19
文章二维码
您是第19945991位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号