基于广义Huber-MRF图像建模的超分辨率复原算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the Key Science-Technology Project of Trigonal Yangtse River of China under Grant No.BE2004400 (长三角联合攻关重大科技项目); the National Natural Science Foundation of China under Grant No.60672074 (国家自然科学基金); the National High-Tech Research and Development Plan of China under Grant No.2007AA12E100 (国家高技术研究发展计划(863)); the National Research Foundation for the Doctoral Program of Higher Education of China under Grant No.M200606018 (国家教育部博士点基金); the Natural Science Foundation of Jiangsu Province of China under Grant No.BK2006569 (江苏省自然科学基金); the Science- Technology Creation Plan for Graduate Students of Jiangsu Province of China (江苏省高校研究生科技创新计划)


Super-Resolution Reconstruction Based on Generalized Huber-MRF Image Modeling
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    超分辨率图像复原是当今一个重要的热门研究课题.鉴于双边滤波优良的噪声抑制性和鲁棒的边缘保持性,提出一种双边滤波导出的广义MRF(Markov random field)图像先验模型.广义MRF模型不仅继承了双边滤波在阶数大邻域中的双重异性加权机制,且简洁地建立了双边滤波与Bayesian MAP(maximum a posterior)方法之间的理论联系.同时,由广义MRF模型导出了一种各向异性扩散PDE(partial differential equation)的改进数值解法.随后,在MRF-MAP框架下分别考虑高斯噪声和脉冲噪声两种情形,提出一种基于广义Huber-MRF模型的超分辨率复原算法,理论上保证具有严格全局最优解,并且利用半二次正则化思想和最速下降法求解相应的最小能量泛函.不论是视觉效果方面,还是峰值信噪比(PSNR)方面,实验结果都验证了广义Huber-MRF模型在超分辨图像复原中具有更强的噪声抑制性和边缘保持能力.

    Abstract:

    Super-Resolution (SR) reconstruction has been a very hot research topic currently. A kind of generalized MRF (GMRF,generalized Markov random field) models is firstly proposed based on the recently reported bilateral filtering. The GMRF model is not only edge-preserving and robust to noise,inherited directly from the bilateral filtering,but also connects the bilateral filtering with the Bayesian MAP (maximum a posterior) approaches much concisely. Meanwhile,an improved numerical scheme of anisotropic diffusion PDE’s (partial differential equation) is deduced based on the GMRF model. In the MRF-MAP framework,a new SR restoration algorithm is subsequently proposed for both cases of Gaussian noise and impulse noise,utilizing the generalized Huber-MRF model which guarantees strictly global convergence. The half-quadratic regularization approach and steepest descent are exploited to solve the energy functional. Experimental results demonstrate the effectiveness of this approach,both in the visual effect and the PSNR value.

    参考文献
    相似文献
    引证文献
引用本文

邵文泽,韦志辉.基于广义Huber-MRF图像建模的超分辨率复原算法.软件学报,2007,18(10):2434-2444

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2005-07-17
  • 最后修改日期:2006-06-30
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号