基于云模型的协同过滤推荐算法
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60496323, 60375016 (国家自然科学基金); the National Basic Research Program of China under Grant No.G2004CB719401 (国家重点基础研究发展计划(973))

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    协同过滤系统是电子商务系统中最重要的技术之一,用户相似性度量方法是影响推荐算法准确率高低的关键因素.针对传统相似性度量方法存在的不足,利用云模型在定性知识表示以及定性、定量知识转换时的桥梁作用,提出一种在知识层面比较用户相似度的方法,克服了传统基于向量的相似度比较方法严格匹配对象属性的不足.以该方法为核心,在全面分析传统方法的基础上,提出一种新的协同过滤推荐算法.实验结果表明,算法在用户评分数据极端稀疏的情况下,仍能取得较理想的推荐质量.

    Abstract:

    Recommendation system is one of the most important technologies applied in e-commerce. Similarity measuring method is fundamental to collaborative filtering algorithm,and traditional methods are inefficient especially when the user rating data are extremely sparse. Based on the outstanding characteristics of Cloud Model on the process of transforming a qualitative concept to a set of quantitative numerical values,a novel similarity measuring method,namely the likeness comparing method based on cloud model (LICM) is proposed in this paper. LICM compares the similarity of two users on knowledge level,which can overcome the drawback of attributes’ strictly matching. This work analysis traditional methods throughly and puts forward a novel collaborative filtering algorithm,which is based on the LICM method. Experiments on typical data set show the excellent performance of the present collaborative filtering algorithm based on LICM,even with extremely sparsity of data.

    参考文献
    [1]Zan H,Hsinchun C,Daniel Z.Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering.ACM Trans.on Information Systems,2004,22(1):116-142.
    [2]Thiesson B,Meek C,Chickering DM,Heckerman D.Learning mixture of DAG models1 microsoft research.Technical Report,MSR2TR297230,1997.
    [3]Sarwar B,Karypis G,Konstan J,Riedl J.Analysis of recommendation algorithms for E-commerce.In:Proc.of the 2nd ACM Conf.on Electronic Commerce.New York:ACM Press,2001.158-167.http://www.research.ibm.com/iac/ec00/
    [4]Aggarwal CC,Wolf J,Wu KL,Yu PS.Horting hatches an egg:A new graph-theoretic approach to collaborative filtering.In:Proc.of the 5th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,1999.201-212.
    [5]Goldberg D,Nichols D,Oki BM,Terry D.Using collaborative filtering to weave an information tapestry.Communications of the ACM,1992,35(12):61-70.
    [6]Resnick P,Iacovou N,Suchak M,Bergstrom P,Riedl J.Grouplens:An open architecture for collaborative filtering of netnews.In:Proc.of the ACM CSCW'94 Conf.on Computer-Supported Cooperative Work.Chapel Hill:ACM,1994.175-186.
    [7]Shardanand U,Maes P.Social information filtering:Algorithms for automating "Word of Mouth".In:Proc.of the ACM CHI'95 Conf.on Human Factors in Computing Systems.New York:ACM Press/Addison-Wesley Publishing Co.,1995.210-217.
    [8]Hill W,Stead L,Rosenstein M,Furnas G.Recommending and evaluating choices in a virtual community of use.In:Proc.of the CHI'95.New York:ACM Press/Addison-Wesley Publishing Co.,1995.194-201.
    [9]Breese J,Hecherman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering.In:Proc.of the 14th Conf.on Uncertainty in Artificial Intelligence (UAI'98).San Francisco:Morgan Kaufmann Publishers,1998.43-52.
    [10]Sarwar BM,Karypis G,Konstan JA,Riedl J.Application of dimensionality reduction in recommender system-A case study.In:Proc.of the ACM WebKDD 2000 Workshop.2000.http://robotics.stanford.edu/~ronnyk/WEBKDD2000/
    [11]Zhao L,Hu NJ,Zhang SZ.Algorithm design for personalization recommendation systems.Journal of Computer Research and Development,2002,39(8):986-991 (in Chinese with English abstract).
    [12]Aggarwal CC.On the effects of dimensionality reduction on high dimensional similarity search.In:Proc.of the ACM PODS Conf.Santa Barbara:ACM,2001.
    [13]Deng AL,Zhu YY,Shi BL.A collaborative filtering recommendation algorithm based on item rating prediction.Journal of Software,2003,14(9):1621-1628 (in Chinese with English abstract).http://www.jos.org.cn/1000-9825/14/1621.htm
    [14]Zhou JF,Tang X,Guo JF.An optimized collaborative filtering recommendation algorithm.Journal of Computer Research and Development,2004,41(10):1842-1847 (in Chinese with English abstract).
    [15]Liu Q.Research on some key technologies of Chinese-English machine translation[Ph.D Thesis].Beijing:Peking University,2004 (in Chinese with English abstract).
    [16]Li DY.Artificial Intelligence with Uncertainty.Beijing:National Defense Industry Press,2005.171-177 (in Chinese).
    [17]Li DY,Liu CY.Study on the universality of the normal cloud model.Engineering Science,2004,6(8):28-34 (in Chinese with English abstract).
    [18]Li DY,Liu CY,Du Y,Han X.Artificial intelligence with uncertainty.Journal of Software,2004,15(11):1583-1594 (in Chinese with English abstract).http://www.jos.org.cn/1000-9825/15/1583.htm
    [19]Li DY.Uncertainty in knowledge representation.Engineering Science,2000,2(10):73-79 (in Chinese with English abstract).
    [20]Zhang BQ.A collaborative filtering recommendation algorithm based on domain knowledge.Computer Engineering,2005,31(21):7-9 (in Chinese with English abstract).
    [21]Sarwar B,Karypis G,Konstan J,Riedl J.Item-Based collaborative filtering recommendation algorithms.In:Proc.of the 10th Int'l World Wide Web Conf.Hong Kong:ACM Press,2001.285-295.
    [22]Zhang F,Chang HY.Employing BP neural networks to alleviate the sparsity issue in collaborative filtering recommendation algorithms.Journal of Computer Research and Development,2006,43(4):667-672 (in Chinese with English abstract).
    [11]赵亮,胡乃静,张守志.个性化推荐算法设计.计算机研究与发展,2002,39(8):986-991.
    [13]邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤算法.软件学报,2003,14(9):1621-1628.http://www.jos.org.cn/1000-9825/14/1621.htm
    [14]周军锋,汤显,郭景峰.一种优化的协同过滤算法.计算机研究与发展,2004,41(10):1842-1847.
    [15]刘群.汉英机器翻译若干关键技术研究[博士学位论文].北京:北京大学,2004.
    [16]李德毅.不确定性人工智能.北京:国防工业出版社,2005.171-177.
    [17]李德毅,刘常昱.论正态云模型的普适性.中国工程科学,2004,6(8):28-34.
    [18]李德毅,刘常昱,杜鹢,韩旭.不确定性人工智能.软件学报,2004,15(11):1583-1594.http://www.jos.org.cn/1000-9825/15/1583.htm
    [19]李德毅.知识表示中的不确定性.中国工程科学,2000,2(10):73-79.
    [20]张丙奇.基于领域知识的个性化推荐算法研究.计算机工程,2005,31(21):7-9.
    [22]张锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题.计算机研究与发展,2006,43(4):667-672.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法.软件学报,2007,18(10):2403-2411

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2006-05-18
  • 最后修改日期:2007-02-05
文章二维码
您是第19999999位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号