无线多媒体通信网适应带宽配置在线优化算法
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60574065 (国家自然科学基金); the National High-Tech Research and Development Plan of China under Grant No.2006AA01Z114 (国家高技术研究发展计划(863)); the Natural Science Foundation of Anhui Province of China under Grant Nos.050420301, 070412063 (安徽省自然科学基金); the Graduate Student Innovation Foundation of USTC under Grant No.KD2006036 (中国科学技术大学研究生创新基金)


An Online Adaptive Bandwidth Allocation Optimization Algorithm for Wireless Multimedia Communication Networks
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于强化学习的方法,提出一种无线多媒体通信网适应带宽配置在线优化算法,在满足多类业务不同QoS(quality of service)要求的同时,提高网络资源的利用率.建立事件驱动的随机切换分析模型,将无线多媒体通信网中的适应带宽配置问题转化为带约束的连续时间Markov决策问题.利用此模型的动态结构特性,结合在线学习估计梯度与随机逼近改进策略,提出适应带宽配置在线优化算法.该算法不依赖于系统参数,如呼叫到达率、呼叫持续时间等,自适应性强,计算量小,能够收敛到全局最优,适用于复杂应用环境中无线多媒体通信网适应带宽配置的在线优化.仿真实验结果验证了算法的有效性.

    Abstract:

    The issue of QoS (quality of service) provisioning for adaptive multimedia in wireless communication networks is considered. A reinforcement learning based online adaptive bandwidth allocation optimization algorithm is proposed. First, an event-driven stochastic switching model is introduced to formulate the adaptive bandwidth allocation problem as a constrained continuous-time Markov decision problem. Then, an online optimization algorithm that combines policy gradient estimation by learning and stochastic approximation is derived. This algorithm can online handle the constrained optimization problem efficiently without explicit knowledge of the underlying system parameters. Moreover, this algorithm does not require the computation of performance potentials or other related quantities (e.g. Q-factors), which is necessary in previous schemes, and therefore saves computational cost significantly. Simulation results demonstrate the effectiveness of the proposed algorithm.

    参考文献
    [1]Kwon T,Choi Y,Das S.Bandwidth adaptation algorithms for adaptive multimedia services in mobile cellular networks.Kluwer Wireless Personal Communications,2002,22(3):337-357.
    [2]Xiao Y,Chen C,Wang Y.Fair bandwidth allocation for multi-class of adaptive multimedia services in wireless/mobile networks.In:Proc.of the IEEE 53rd Vehicular Technology Conf.Piscataway:IEEE Press,2001.2081-2085.
    [3]Chou CT,Shin KG.Analysis of adaptive bandwidth allocation in wireless networks with multilevel degradable quality of service.IEEE Trans.on Mobile Computing,2004,3(1):5-17.
    [4]Nasser N,Hassanein H.Connection-Level performance analysis for adaptive bandwidth allocation in multimedia wireless cellular networks.In:Hassanein H,Oliver RL,Richard GG,Wilson LF,eds.Proc.of the IEEE Int'l Conf.on Performance,Computing,and Communications.Piscataway:IEEE Press,2004.61-68.
    [5]Wu Y,Bi GG.A measurement based dynamic call admission control scheme in wireless multimedia communication networks.Chinese Journal of Computers,2005,28(11):1823-1830 (in Chinese with English abstract).
    [6]Tang SS,Li W,Kim J.Modeling adaptive bandwidth allocation scheme for multi-service wireless cellular networks.In:Pierre S,Conan J,eds.Proc.of the IEEE Int'l Conf.on Wireless and Mobile Computing,Networking and Communications.Piscataway:IEEE Press,2005.189-195.
    [7]Jiang AQ,Ye XG,Wu JG.Bandwidth adaptation scheme using genetic algorithm in wireless/mobile networks.Computer Research and Development,2004,41(9):1453-1459 (in Chinese with English abstract).
    [8]Yu F,Wong VWS,Leung VCM.Efficient QoS provisioning for adaptive multimedia in mobile communication networks by reinforcement learning.Mobile Networks and Applications,2006,11(1):101-110.
    [9]Marbach P,Tsitsiklis JN.Simulation-Based optimization of Markov reward processes.IEEE Trans.on Automatic Control,2001,46(2):191-209.
    [10]Cao XR,Chen HF.Perturbation realization,potentials and sensitivity analysis of Markov processes.IEEE Trans.on Automation Control,1997,42(10):1382-1393.
    [11]Bertsekas DP.Dynamic Programming and Optimal Control.2nd ed.,Belmont:Athena Scientific,2001.
    [12]Puterman ML.Markov Decision Processes:Discrete Stochastic Dynamic Programming.New York:John Wiley & Sons,1994.
    [13]Cao XR.The potential structure of sample paths and performance sensitivities of Markov systems.IEEE Trans.on Automatic Control,2004,49(12):2129-2142.
    [14]Chong EKP,Ramadge PJ.Stochastic optimization of regenerative systems using infinitesimal perturbation analysis.IEEE Trans.on Automatic Control,1994,39(7):1400-1410.
    [15]Glynn PW.Likelihood ratio gradient estimation:An overview.In:Thesen A,Grant H,Kelton WD,eds.Proc.of the 19th Winter Simulation Conf.New York:ACM Press,1987.90-105.
    [16]Fang HT,Cao XR.Potential-Based on-line policy iteration algorithms for Markov decision processes.IEEE Trans.on Automatic Control,2004,49(4):493-505.
    [5]吴越,毕国光.无线多媒体网络中一种基于测量网络状态的动态呼叫接纳控制算法.计算机学报,2005,28(11):1823-1830.
    [7]姜爱全,叶晓国,吴家皋.无线/移动网络中基于遗传算法的带宽适应方案.计算机研究与发展,2004,41(9):1453-1459.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

江琦,奚宏生,殷保群.无线多媒体通信网适应带宽配置在线优化算法.软件学报,2007,18(6):1491-1500

复制
分享
文章指标
  • 点击次数:4131
  • 下载次数: 5515
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2005-12-24
  • 最后修改日期:2006-02-23
文章二维码
您是第19939651位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号