基于改进多目标遗传算法的入侵检测集成方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60303023 (国家自然科学基金); the National High-Tech Research and Development Plan of China under Grant No.2003AA142010 (国家高技术研究发展计划(863)); the High-Tech Research Plan of Jiangsu Province of China under Grant No.BG2004030 (江苏省高技术计划)


An Ensemble Approach to Intrusion Detection Based on Improved Multi-Objective Genetic Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有入侵检测算法中存在着对不同类型攻击检测的不均衡性以及冗余或无用特征导致的检测模型复杂与检测精度下降的问题,提出了一种基于改进多目标遗传算法的入侵检测集成方法.利用改进的多目标遗传算法生成检测率与误报率均衡优化的最优特征子集的集合,并采用选择性集成方法挑选精确的、具有多样性的基分类器构造集成入侵检测模型.实验结果表明,该算法能够有效地解决入侵检测中存在的特征选择问题,并在保证较高检测精度的基础上,对不同类型的攻击检测具有良好的均衡性.

    Abstract:

    There exist some issues in current intrusion detection algorithms such as unbalanced detection performance on different types of attacks, and redundant or useless features that will lead to the complexity of detection model and degradation of detection accuracy. This paper presents an ensemble approach to intrusion detection based on improved multi-objective genetic algorithm. The algorithm generates the optimal feature subsets, which achieve the best trade-off between detection rate and false positive rate through an improved MOGA. And the most accurate and diverse base classifiers are selected to constitute the ensemble intrusion detection model by selective ensemble approach. The experimental results show that the algorithm can solve the feature selection problem of intrusion detection effectively. It can also achieve balanced detection performance on different types of attacks while maintaining high detection accuracy.

    参考文献
    相似文献
    引证文献
引用本文

俞研,黄皓.基于改进多目标遗传算法的入侵检测集成方法.软件学报,2007,18(6):1369-1378

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2006-06-18
  • 最后修改日期:2006-12-06
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号