基于平行性约束的摄像机标定与3D重构
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60575019, 60673100 (国家自然科学基金)


Camera Calibration and 3D Reconstruction Using Parallelism Constraint
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    引入了梯形的一个仿射不变量,并利用这个不变量,建立了梯形的相似不变量与摄像机内参数之间的约束关系.基于这个约束关系,利用摄像机内参数的知识或梯形相似不变量的知识,可以线性确定摄像机的内参数、运动参数和梯形的相似不变量.由于梯形是由一对平行线段唯一确定的,平行线段在许多场景中经常出现,因而该方法有很广泛的适用性.实验结果表明了该算法的有效性.该工作提供了一个基于平行性约束的框架,以往的基于平行四边形、平行六面体的方法都可以纳入到这个框架中.

    Abstract:

    This paper introduces an affine invariant of trapezia, and the explicit constraint equation between the intrinsic matrix of a camera and the similarity invariants of a trapezium are established using the affine invariant. By this constraint, the inner parameters, motion parameters of the cameras and the similarity invariants of trapezia can be linearly determined using some prior knowledge on the cameras or the trapezia. The proposed algorithms have wide applicability since parallel lines are not rare in many scenes. Experimental results validate the proposed approaches. This work presents a unifying framework based on the parallelism constraint, and the previous methods based on the parallelograms or the parallelepipeds can be integrated into this framework.

    参考文献
    [1]Hartley R,Zisserman A.Multiple View Geometry in Computer Vision.Cambridge:Cambridge University Press,2000.71-76.
    [2]Zhang ZY.Flexible camera calibration by viewing a plane from unknown orientations.In:Proc.of the IEEE ICCV99.1999.666-673.
    [3]Sturm P,Maybank SJ.On plane-based camera calibration:A general algorithm,singularities,applications.In:Proc.of the IEEE CVPR99.1999.432-437.
    [4]Zhang ZY.Camera calibration with one-dimensional objects.IEEE-T PAMI,2004,26(7):892-899.
    [5]Hartley R,Zisserman A.Multiple View Geometry in Computer Vision.Cambridge:Cambridge University Press,2000.454-456.
    [6]Hartley RI.An algorithm for self-calibration from several views.In:Proc.of the IEEE CVPR94.1994.908-912.
    [7]Pollefeys M,Gool LV.A stratified approach to metric self-calibration.In:Proc.of the IEEE CVPR97.1997.407-412.
    [8]Hartley RI,Agapite LD.Hayman E,Reid I.Camera calibration and search for infinity.In:Proc.of the IEEE ICCV99.1999.510-517.
    [9]Sturm P.Critical motion sequences for monocular self-calibration and uncalibrated Euclidean reconstruction.In:Proc.of the IEEE CVPR97.1997.1100-1105.
    [10]Hartley RI.Self-Calibration of stationary cameras.International Journal of Computer Vision,1997,22(1):5-23.
    [11]Hartley R,Zisserman A.Multiple View Geometry in Computer Vision.Cambridge:Cambridge University Press,2000.209-212.
    [12]Zhu HJ,Wu FC,Hu ZY.Camera calibration based on two parallel line segments.Acta Automatica Sinica,2005,31(6):853-864 (in Chinese with English abstract).
    [13]Chen C,Yu C,Hung Y.New calibration-free approach for augmented reality based on parameterized cuboid structure.In:Proc.of the IEEE ICCV99.1999.30-37.
    [14]Wilczkowiak M,Sturm P,Boyer E.Using geometric constraints through parallelepipeds for calibration and 3D modeling.IEEE-T PAMI,2005,27(2):194-207.
    [15]Wu FC,Duan FQ,Hu ZY.An affine invariant of parallelograms and its application to camera calibration and 3D reconstruction.In:Proc.of the ECCV 2006.LNCS 3952,Springer-Verlag,2006.191-204.
    [12]祝海江,吴福朝,胡占义.基于两条平行线段的摄像机标定.自动化学报,2005,31(6):853-864.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

段福庆,吴福朝,胡占义.基于平行性约束的摄像机标定与3D重构.软件学报,2007,18(6):1350-1360

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2006-06-29
  • 最后修改日期:2006-08-16
文章二维码
您是第19868165位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号