用擂台赛法则构造多目标Pareto最优解集的方法
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60435010, 69974043 (国家自然科学基金); the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education (教育部留学回国人员科研启动基金); the Natural Science Foundation of Hu'nan Province of China under Grant Nos.01JJY2060, 05JJ30125 (湖南省自然科学基金); the SRF of Hu'nan Provincial Education Department (湖南省教育厅重点科研项)


An Approach of Constructing Multi-Objective Pareto Optimal Solutions Using Arena's Principle
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对多目标进化的特点,提出了用擂台赛法则(arena's principle,简称AP)构造多目标Pareto最优解集的方法,论证了构造方法的正确性,分析了其时间复杂度为O(rmN)(0m/N<1).理论上,当AP与Deb的算法以及Jensen的算法比较时(它们的时间复杂度分别为O(rN2)和O(Nlog(r-1)N)),AP优于Deb的算法;当目标数r较大时(如r≥5),AP优于Jensen的算法;此外,当m/N较小时(如m/N≤50%),AP的效率与其他两种算法比较具有优势.对比实验结果表明,AP具有比其他两种算法更好的CPU时间效率.在应用中,AP可以被集成到任何基于Pareto的MOEA中,并能在较大程度上提高MOEA的运行效率.

    Abstract:

    This paper proposes an approach, namely the arena’s principle (AP), to construct the Pareto optimal solutions by utilizing features of the multi-objective evolution. It is proved that the AP works correctly and its computational complexity is O(rmN) (0<1). Theoretically, when AP is compared with Deb’s algorithm and Jensen’s algorithm (their computational complexity are O(rN2) and O(Nlog(r-1)N) respectively), AP is better than Deb’s, and is also better than Jensen’s when the objective number r is relatively large (such as r≥5). Moreover, AP performs better than the other two algorithms when m/N is relatively small (such as m/N≤50%). Experimental results indicate that AP performs better than the other two algorithms on the CPU time efficiency. In applications, AP can be integrated into any Pareto-based MOEA to improve its running efficiency.

    参考文献
    [1]Coello Coello CA,Van Veldhuizen DA,Lamont GB.Evolutionary Algorithms for Solving Multi-Objective Problems.Kluwer Acedemic/Plenum Publishers,2002.
    [2]Coello Coello CA,Lamont GB.Applications of Multi-Objective Evolutionary Algorithms.Singapore:World Scientific,2004.
    [3]Corne DW,Jerram NR,Knowles JD,Oates MJ.PESA-Ⅱ:Region-Based selection in evolutionary multiobjective optimization.In:Proc.of the Genetic and Evolutionary Computation Conf.(GECCO 2001).Morgan Kaufmann Publishers,2001.283-290.
    [4]Knowles JD,Corne DW.Approximating the nondominated front using the Pareto archived evolution strategy evolutionary computation.Evolutionary Computation,2000.149-172.
    [5]Aguirre AH,Rionda SB,Coello Coello CA,Lizáraga GL,Montes EM.Handling constraints using multiobjective optimization concepts.Int'l Journal for Numerical Methods in Engineering,2004,59(15):1989-2017.
    [6]Fonseca CM,Fleming PJ.An overview of evolutionary algorithms in multi-objective optimization.Evolutionary Computation,1995,3(1):1-16.
    [7]Horn J,Nafpliotis N,Goldberg DE.A niched Pareto genetic algorithm for multiobjective optimization.In:Proc.of the 1st IEEE Conf.on Evolutionary Computation.Piscataway:IEEE Service Center,1994.82-87.
    [8]Zitzler E,Thiele L.Multiobjective evolutionary algorithms:A comparative case study and the strength pareto approach.IEEE Trans.on Evolutionary Computation,1999,3(4):257-271.
    [9]Zitzler E,Laumanns M,Thiele L.SPEA2:Improving the strength pareto evolutionary algorithm for multiobjective optimization.In:Giannakoglou K,et al.,eds.Proc.of the EUROGEN 2001-Evolutionary Methods for Design,Optimisation and Control with Applications to Industrial Problems.2001.95-100.
    [10]Deb K,Pratap A,Agrawal S,Meyrivan T.A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ.IEEE Trans.on Evolutionary Computation,2002,6(2):182-197.
    [11]Deb K,Agrawal S,Pratab A,Meyarivan T.A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:NSGA-Ⅱ.KanGAL Report,200001,Kanpur:Indian Institute of Technology,2000.
    [12]Jensen MT.Reducing the run-time complexity of multiobjective EAs:The NSGA-Ⅱ and other algorithms.IEEE Trans.on Evolutionary Computation,2003,7(5):503-515.
    [13]Zheng JH,Ling C,Shi ZZ,Xue J,Li XY.A multi-objective genetic algorithm based on quick sort.In:Tawfik AY,Goodwin SD,eds.Proc.of the 17th Canadian Conf.on Artificial Intelligence.London:Springer-Verlag,2004.175-186.
    [14]Deb K,Thiele L,Laumanns M,Zitzler E.Scalable test problems for evolutionary multiobjective optimization.In:Yao X,ed.Proc.of the 2002 Congress on Evolutionary Computation.New Jersey:IEEE Service Center,2002.825-830.
    [15]Knowles JD,Corne DW,Fleischer M.Bounded archiving using the lebesgue measure.In:Proc.of the 2003 Congress on Evolutionary Computation (CEC 2003),Vol.4.Canberra:IEEE Press,2003.2490-2497.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑金华,蒋浩,邝达,史忠植.用擂台赛法则构造多目标Pareto最优解集的方法.软件学报,2007,18(6):1287-1297

复制
分享
文章指标
  • 点击次数:4365
  • 下载次数: 6997
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2006-07-05
  • 最后修改日期:2006-08-18
文章二维码
您是第19783862位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号