基于免疫克隆选择的块匹配运动估计
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60133010, 60372045 (国家自然科学基金); the Defense Pre-Research Project of the 'Ninth Five-Year-Plan' of China under Grant No.51406020104DZ0124 (国家"九五"国防预研基金); the Key Science-Technology Project of Higher Education of China under Grant No.0202A022 (国家教育部重点项目); the National Research Foundation for the Doctoral Program of Higher Education of China under Grant No.20030701013 (国家教育部博士点基金)


Block Motion Estimation Based on Immune Clonal Selection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    运动估计是视频压缩编码中的关键技术.从运动矢量的特点出发,采用搜索点预测、Gray码编码以及有效的迭代终止准则等策略,提出了基于免疫克隆选择的块匹配运动估计.该方法将块匹配运动估计问题的性质与免疫克隆选择算法所具有的全局搜索特性、解的多样性和不易早熟的特点相融合,在能够获得接近全搜索方法所得到的平均峰值信噪比的前提下,使得平均搜索点数大为降低.仿真实验结果表明,在大多数序列上,该算法都比已有的快速搜索算法具有更高的性能和更少的平均搜索点数.同时,该算法适用面广,对大运动和小运动序列都能得到较好的效果.

    Abstract:

    Motion estimation is a key technique in video compress and coding. Based on the analysis of the character of motion vector, a novel block motion estimation based on immune clonal selection (BMEICS) is proposed in this paper with some strategies like prediction of initial search point, Gray encoding and effective stop criteria. BMEICS synthesizes the character of block motion estimation and that of global search, diversity, and no prone to premature in immune clonal selection. It speeds up the process of motion estimation while maintaining the average with little loss. Experimental results show that BMEICS obtains almost the same as the full search algorithm with fewer search points, and outperforms the existing fast block-matching algorithms for most sequences in terms of speed and quality. Furthermore, BMEICS is applicable to all types of video sequences in spite of the degree of motion.

    参考文献
    相似文献
    引证文献
引用本文

刘芳,潘晓英.基于免疫克隆选择的块匹配运动估计.软件学报,2007,18(4):850-860

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2005-07-23
  • 最后修改日期:2006-04-03
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号