时态数据挖掘的相似性发现技术
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60173058, 70372024 (国家自然科学基金)


Similarity Discovery Techniques in Temporal Data Mining
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现实世界存在着大量的时态数据,时态数据挖掘(temporal data mining,简称TDM)是近年来学术界关注的一个重要研究课题.相似性发现技术关注数据的发展变化,试图从时态数据中发现事物动态演化的相似性规律.分析和比较了近年来TDM研究中涉及的主要相似性发现技术.首先区分定义了3类时态数据:时间序列、事件序列和交易序列;然后分类并讨论了各种与序列相关的主要方法和技术,涉及相似性度量、序列抽象表示和搜索,以及各类挖掘任务及其算法操作;最后展望进一步研究的方向.

    Abstract:

    Temporal data mining (TDM) has been attracting more and more interest from a vast range of domains, from engineering to finance. Similarity discovery technique concentrates on the evolution and development of data, attempting to discover the similarity regularity of dynamic data evolution. The most significant techniques developed in recent researches to deal with similarity discovery in TDM are analyzed. Firstly, the definitions of three categories of temporal data, time series, event sequence, and transaction sequence are presented, and then the current techniques and methods related to various sequences with similarity measures, representations, searching, and various mining tasks getting involved are classified and discussed. Finally, some future research trends on this area are discussed.

    参考文献
    相似文献
    引证文献
引用本文

潘定,沈钧毅.时态数据挖掘的相似性发现技术.软件学报,2007,18(2):246-258

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2005-06-19
  • 最后修改日期:2006-01-11
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号