面向大分子的三维数据场特征分析与可视化
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60533050, 60503056, 60021201 (国家自然科学 基金)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    介绍了在面向生物大分子结构和功能分析的三维数据场建模、特征分析与可视化方面的初步尝试.从蛋白质分子结构出发,采用量子化学理论计算得到一个规则采样的三维数据场,场的每个格点上记录蛋白酶分子内部各种力的综合作用.在每个格点上实施离散一阶、二阶局部微分计算,从而筛选出一系列数据场内的临界点,这些临界点潜在地揭示了蛋白质分子的功能区域所在.继而,计算数据场内各种型值的分子势能面,交互地探寻具有一定生物活性的“通道”区域.此外,探索运用多种点、面和体可视化技术,来寻找分子内部的宏观结构.通过上述多种特征分析与可视化手段,成功地寻找到HIV-1蛋白酶分子中隐藏的水分子排出通道.

    Abstract:

    This paper introduces the primary attempts on the modeling, analysis and visualization of the 3D macromolecular scalar field. According to the quantum chemical theory, one protein molecular structure is transformed into a regularly sampled 3D scalar field, in which each node records the combined effect of different actions in protease. By applying the first order and the second order local differential operators on individual node, a set of critical points which potentially depicts the active region of protein molecule are found. Also the paper gives some results after computing a sequence of molecular potential energy in the data field and interactively exploring the potential “tunnel” region exhibiting biological sense. In addition, the point-based, surface and volume rendering techniques are exploited to find the macro-structure inside the data field. With all these techniques, the escape route of water molecules hidden in the HIV-1 protease is successfully detected, which is in accordance with the experimental results.

    参考文献
    [1] Ankerst M, Kastenmüller G, Kriegel HP, Seidl T. 3D Shape histograms for similarity search and classification in spatial databases. In: Güting RH, Papadias D, Lochovsky F, eds. Proc. of the 6th Int’l Symp. on Spatial Databases (SSD 1999). Heidelberg: Springer-Verlag, 1999. 207.
    [2] Ankerst M, Kastenmüller G, Kriegel HP, Seidl1 T. Nearest neighbor classification in 3D protein databases. In: Proc. of the 7th Int’l Conf. on Intelligent Systems for Molecular Biology (ISMB’99). Heidelberg: AAAI Press, 1999. 34-43.
    [3] Bader RFW, Austen MA. Properties of atoms in molecules: Atoms under pressure. Journal of Chemical Physics, 1997,107:4271– 4285.
    [4] Bajaj CL, Pascucci V, Shamir A, Holt RJ, Netravali AN. Multiresolution molecular shapes. TICAM Report, 1999. 99-42.
    [5] Branden C, Tooze J. Introduction to Protein Structure. 2nd ed., New York: Garland Publishing, Inc, 1998.
    [6] Cramer RD, Patterson DE, Bunce JD. Comparative molecular field analysis (CoMFA). 1. Effect of Shape on Binding of Steroids to Carrier Proteins. Journal of Am. Chem. Soc., 1988,110:5959-5967.
    [7] Keim DA. Efficient geometry-based similarity search of 3D spatial databases. In: Proc. of the ACM SIGMOD Int’l Conf. on Management of Data (SIGMOD’99). 1999. 419–430.
    [8] Kubinyi H. Comparative molecular field analysis (CoMFA). In: The Encyclopedia of Computational Chemistry. John Wiley & Sons Ltd., 1998. 448-460.
    [9] Morse P, Feshbach H. Methods of Theoretical Physics, Part 1. New York: McGrawHill, 1953.
    [10] Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem AA, Aflalo C, Vakser IA. Molecular surface recognition: Determination of geometric fit between proteins and their ligands by correlation techniques. In: Proc. of the National Academy of Sciences. 1992, 89:2195-2199.
    [11] Kriegel HP, Kroeger P, Mashael Z, Pfeifle M, Poetkey M, Seidlz T. Effective similarity search on voxelized CAD objects. In: Proc. of the 8th Int’l Conf. on Database Systems for Advanced Applications (DASFAA 2003). Los Alamitos: IEEE Computer Society Press, 2003.
    [12] Leach AR. Molecular Modelling: Principles and Applications. 2nd ed., Pearson Education EMA, 2001.
    [13] Anfinsen CB. The Molecular Basis of Evolution. New York: John Wiley & Sons, Inc. 1959.
    [14] Xu XJ, Hou TJ, Qiao XB, Zhang W. Computer Aided Molecular Drug Design. Beijing: Chemical Industry Press, 2004 (in Chinese).
    [15] Lai LH. Protein’s Structure Prediction and Molecular Design. Beijing: Peking University Press, 1993 (in Chinese).
    [16] Wang BN, Chen LJ, Wang J. The method to research the chemical molecule using the theory of electronic density topology. Physics Bimonthly, 2004,26(3):530-536 (in Chinese with English abstract).
    [17] Tang ZS, et al. Scientific Visualization of 3D Data Set. Beijing: Tsinghua University Press, 1996 (in Chinese).
    [18] Xin HW. Molecular Topology. Hefei: USTC Press, 1992 (in Chinese). 附中文参考文献:
    [14] 徐筱杰,侯廷军,乔学斌,章威.计算机辅助药物分子设计.北京:化学工业出版社,2004.
    [15] 来鲁华.蛋白质的结构预测与分子设计.北京:北京大学出版社,1993.
    [16] 王本宁,陈立基,王瑜.电子密度拓扑学研究化学分子的方法.物理双月刊,2004,26(3):530-536.
    [17] 唐泽圣,等.三维数据场可视化.北京:清华大学出版社,1996.
    [18] 辛厚文.分子拓扑学.合肥:中国科学技术大学出版社,1992.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

韩 玮,汪 莉,陈 为,万华根,彭群生,吴 韬,王 琦.面向大分子的三维数据场特征分析与可视化.软件学报,2006,17(zk):103-109

复制
分享
文章指标
  • 点击次数:3427
  • 下载次数: 5226
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2006-03-15
  • 最后修改日期:2006-09-11
文章二维码
您是第19867622位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号