基于距离比值的迭代分形图
作者:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    由于逃逸时间算法不能绘制函数收敛区域,所以现有的分形图大都存在大片的黑色区域.提出一种新的构造分形图的方法:距离比值迭代法.该方法采用两点迭代,利用其距离比值的收敛次数来绘制分形图.利用距离比值迭代法绘制了复映射zzα+c的广义M-J集并分析其构图性质.距离比值广义M-J集的内部收敛区域具有复杂的细节和自相似结构,当α>0时其外部边界与经典M-J集一致,当α<0时能够绘制出经典M-J集所没有的复杂结构.

    Abstract:

    The escape time algorithm cannot render the convergence region of mapping, so there are some black regions in escape time fractal. In this paper, a novel method is presented to construct fractal image, which is named the distance ratio iteration method. This method performs iteration on two points and render fractal image by using their distance ratio convergence times. Taking complex mapping zzα+c as example, the generalized Mandelbrot and Julia sets are constructed based on distance ratio and their visual properties are analyzed. The result fractal image has complex and self-similarity structure in inner convergence region. It is proved that the boundary of distance ratio fractal is the same as M-J set when α>0, and some visual structure of it with various exponent α are discussed. When α<0, the generalized Mandelbrot and Julia set based on distance ratio have some complex structures which M-J set does not have.

    参考文献
    [1] Mandelbrot BB. The Fractal Geometry of Nature. W.H. Freeman, 1982. 5-47.
    [2] Spehar B, Clifford C, Newell B, Taylor R. Universal aesthetic of fractals. Computers & Graphics, 2003,27(5):813-820.
    [3] Liaw SA. Find the mandelbrot-like sets in any mapping. Fractals, 2002,10(2):137-146.
    [4] Buchanan W, Gomatam J, Steves B. Generalized Mandelbrot sets for meromorphic complex and quaternionic maps. Int’l Journal of Bifurcation and Chaos, 2002,12(8):1755-1777.
    [5] Leys J. Sphere inversion fractals. Computers & Graphics, 2005,29(3):463-466.
    [6] Wang XY. Researches on some internal structures of the general Mandelbrot sets for negative real index number. Journal of Computer-Aided Design & Computer Graphics, 2001,13(10):868-872 (in Chinese with English abstract).
    [7] Wang XY, Liu XD, Zhu WY, Gu SS. Analysis of c-plane fractal images from z←zα+c for (α<0). Fractals, 2000,8(3):307-314.
    [8] Wang XY, Shi QJ. The generalized M-J sets of complex exponent mapping. Progress in Natural Science, 2004,14(8):934-940 (in Chinese with English abstract).
    [9] Chen N, Zhu WY.M-Fractal image from complex mapping z←zw+c (w=α+iβ) in the complex C-plane. Journal of Computer Research and Development, 1997,34(12):899-907 (in Chinese with English abstract). 张锡哲 等:基于距离比值的迭代分形图 77
    [10] Chen N, Zhu WY. J fractal image constructed from complex mapping z←zw+c(w=α+iβ). Journal of Computer Research and Development, 1998,35(11):1020-1023 (in Chinese with English abstract).
    [11] Chen N, Zhu WY. General Mandelbrot set and Julia set constructed by complex mapping . )(e2πi??????????+czmJournal of Computer Research and Development, 1997,34(5):393-396 (in Chinese with English abstract).
    [12] Hooper KJ. A note on some internal structures of the Mandelbrot set. Computers & Graphics, 1991,15(2):295-297.
    [13] Pickover CA. Chaos and Fractals: A Computer Graphical Journey. Elsevier Science, 1998. 367-374.
    [14] Wang XY. Fractal structures of the non-boundary region of the generalized Mandelbrot set. Progress in Natural Science, 2001, 11(9):693-700 (in Chinese with English abstract).
    [15] Wang XY, Chang PJ. Using lyapunov exponent and period points to analysis generalized M-J sets. Progress in Natural Science, 2005,15(4):472-480 (in Chinese with English abstract).
    [16] Dhurandhar SV. Analysis of z-plane fractal images from z←zα+c for α<0. Computers & Graphics, 1993,17(1):89-94.
    [17] Gujar UG, Bhavsar VC, Vangala N. Fractal images from z←zα+c in the complex z-plane. Computers & Graphics, 1992,16(1): 45-49.
    [18] Gujar UG, Bhavsar VC. Fractals from z←zα+c in the complex c-plane. Computers & Graphics, 1991,15(3):441-449.
    [19] Sasmor JC. Fractals for functions with rational exponent. Computers & Graphics, 2004,28(4):601-615.
    [20] Huang YN. Global analysis of the Mandelbrot set and the general Mandelbrot set. China Science (Series A), 1991,(8):823-830 (in Chinese with English abstract).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张锡哲,吕天阳,王钲旋.基于距离比值的迭代分形图.软件学报,2006,17(zk):70-77

复制
分享
文章指标
  • 点击次数:3308
  • 下载次数: 4958
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2006-03-15
  • 最后修改日期:2006-09-11
文章二维码
您是第19783709位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号