均匀B样条基与DP-NTP基之间的转换与应用
作者:
基金项目:

Supported by the National Grand Fundamental Research 973 Program of China under Grant No.2004CB719400 (国家重点基础研究发展规划(973)); the National Natural Science Foundation of China under Grant No.60373033, 60333010 (国家自然科学基金)


Conversion Between Uniform B-Spline Bases and DP-NTP Bases and Its Application
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    B样条基以其标准全正性和局部支柱性的长处,在曲线曲面构造中被广泛应用.而作为其特殊情况的均匀B样条,又因其操作简便等长处,对其的研究在工业造型设计方面也十分有意义.2003年,Delgado和Pe?a提出了另一类用标准全正基(DP-NTP基)构造的新曲线表示形式,这种曲线在求值运算中具有线性时间复杂度的明显优势,同时像B样条曲线那样具有模拟或保持控制多边形形状的保形性质,但没有形状局部可调性.为了使它们实现优势互补,并在不同的造型系统之间进行数据的交换和传递,给出了均匀B样条曲线与DP-NTP曲线的相互转换.实例表明,其结果可在CAD系统中,尤其在曲线曲面需要快速求值或形状局部可调的场合得到相当广泛的应用.

    Abstract:

    B-spline basis is widely used in construction of curves and surfaces for its excellent property of being totally positive and locally adjustable. Uniform B-spline as a special case of B-spline is also worth researching for its convenience in operation in industry modeling. In 2003, Delgado and Pe?a had given another new form of curve, which is constructed by a new totally positive basis (DP-NTP basis). This kind of curve shows obvious advantage in computing, for the reason that it has linear complexity. Meanwhile, it has good shape preserving property. But regretfully it is not locally adjustable as how B-spline curves do. As to achieve the advantages of both, and as well make exchanging and transferring data possible between various systems, the conversion between uniform B-spline curves and DP-NTP curves is presented. Examples show that this result can be widely used in efficient evaluation of locally adjustable curves and surfaces.

    参考文献
    [1] Ball AA. Consurf PartⅠ: Introduction of conic lofting tile. Computer Aided Design, 1974,6(4):243-249.
    [2] Said HB. A generalized Ball curve and its recursive algorithm. ACM Trans. on Graph, 1989,8(4):360-371.
    [3] Wang GJ. Ball curve of high degree and its geometric properties. Appl. Math. Journal of Chinese Universities, 1987,2(1):126-140 (in Chinese with English abstract).
    [4] Hu SM, Wang GZ, Jin TG. Properties of two types of generalized Ball curves. Computer Aided Design, 1996,28(2):125-133.
    [5] Xi MC. Conjugate basis of ball basis function and its application. Mathematica Numerica Sinica, 1997,19(2):147-153 (in Chinese with English abstract).
    [6] Othman W, Goldman RN. The dual basis functions for the generalized Ball basis of odd degree. Computer Aided Geometric Design, 1997,14(6):571-582.
    [7] Wu HY. Two new types of generalized Ball curves. Acta Mathematicae applicatae Sinica, 2000,23(2):196-205 (in Chinese with English abstract).
    [8] Jiang P, Wu HY. Dual basis functions for Wang-Ball basis and its application. Journal of Computer-Aided Design and Computer Graphics, 2004,16(4):454-458 (in Chinese with English abstract).
    [9] Huynh NP, Nattawit D. Efficient algorithms for Bézier curves. Computer Aided Geometric Design, 2000,17(3):247-250.
    [10] Wang GJ, Cheng M. New algorithms for evaluating parametric surfaces, Progress in Natural Science, 2001,11(2):142-148.
    [11] Wang GJ, Wang GZ, Zheng JM. Computer Aided Geometric Design. Beijing: CHEP-Springer, 2001 (in Chinese).
    [12] Delgado J, Pena JM. A shape preserving representation with an evaluation algorithm of linear complexity. Computer Aided Geometric Design, 2003,14(6):1-10. 附中文参考文献:
    [3] 王国瑾.高次Ball曲线及其几何性质.高校应用数学学报,1987,2(1):126-140.
    [5] 奚梅成.Ball基函数的对偶基及其应用.计算数学,1997,19(2):147-153.
    [7] 邬弘毅.两类新的广义Ball曲线.应用数学学报,2000,23(2):196-205.
    [8] 江平,邬弘毅.Wang-Ball基函数的对偶基及其应用.计算机辅助设计与图形学学报,2004,16(4):454-458.
    [11] 王国瑾,汪国昭,郑建民.计算机辅助几何设计.北京:高等教育出版社;林德博格:施普林格出版社,2001.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

成 敏,王国瑾.均匀B样条基与DP-NTP基之间的转换与应用.软件学报,2006,17(zk):38-45

复制
分享
文章指标
  • 点击次数:3126
  • 下载次数: 4603
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2006-03-15
  • 最后修改日期:2006-09-11
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号