基于分形技术的数据流突变检测算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60496325, 60496327, 60503034 (国家自然科学基金); the Shanghai Rising-Star Program of China under Grant No.04QMX1404 (上海市青年科技启明星计划)


Fractal-Based Algorithms for Burst Detection over Data Streams
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    数据流上的突变检测技术由于其在风险分析、网络监测、趋势分析等领域广阔的应用前景而受到学术界和工业界越来越多的关注.为了在数据流上检测多个滑动窗口上的单调聚集函数值和非单调聚集函数值的突变,提出了基于分形技术的构建单调搜索空间的突变检测算法.首先给出了数据流上的分段分形模型,进而基于该模型设计了突变检测算法.该算法能够将突变检测处理时间复杂度从O(m)降为O(logm)(m为需要被检测的滑动窗口数目).提出的两种新颖的分段分形模型能够准确

    Abstract:

    Burst detection over data streams has been attracting more and more attention from academic and industry communities due to its broad potential applications in venture analysis, network monitoring, trend analysis and so on. This paper aims at detecting bursts of both monotonic and non-monotonic aggregates over multiple windows in data streams. A burst detection algorithm through building monotonic search space based on fractal technique is proposed. First, the piecewise fractal model on data stream is introduced, and then based on this model the algorithm for detecting bursts is presented. The proposed algorithm can decrease the time complexity from O(m) to O(logm), where m is the number of sliding windows being detected. Two novel piecewise fractal models can model the self-similarity and compress data streams with high accuracy. Theoretical analysis and experimental results show that this algorithm can achieve a higher precision with less space and time complexity as compared with the existing methods, and it could be concluded that the proposed algorithm is suitable for burst detection over data streams.

    参考文献
    相似文献
    引证文献
引用本文

秦首科,钱卫宁,周傲英.基于分形技术的数据流突变检测算法.软件学报,2006,17(9):1969-1979

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2005-09-19
  • 最后修改日期:2005-12-13
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号